본문 바로가기

추천 검색어

실시간 인기 검색어

데이터가 뛰어노는 AI 놀이터, 캐글

상위 랭킹 진입을 위한 필살기
한빛미디어 · 2021년 05월 10일
9.2
10점 중 9.2점
(10개의 리뷰)
집중돼요 (75%의 구매자)
  • 데이터가 뛰어노는 AI 놀이터, 캐글 대표 이미지
    데이터가 뛰어노는 AI 놀이터, 캐글 대표 이미지
  • A4
    사이즈 비교
    210x297
    데이터가 뛰어노는 AI 놀이터, 캐글 사이즈 비교 183x235
    단위 : mm
01 / 02
MD의 선택 무료배송 이벤트 소득공제
10% 31,500 35,000
적립/혜택
1,750P

기본적립

5% 적립 1,750P

추가적립

  • 5만원 이상 구매 시 추가 2,000P
  • 3만원 이상 구매 시, 등급별 2~4% 추가 최대 1,750P
  • 리뷰 작성 시, e교환권 추가 최대 300원
배송안내
무료배송
배송비 안내
국내도서/외국도서
도서 포함 15,000원 이상 구매 시 무료배송
도서+사은품 또는 도서+사은품+교보Only(교보굿즈)

15,000원 미만 시 2,500원 배송비 부과

교보Only(교보배송)
각각 구매하거나 함께 20,000원 이상 구매 시 무료배송

20,000원 미만 시 2,500원 배송비 부과

해외주문 서양도서/해외주문 일본도서(교보배송)
각각 구매하거나 함께 15,000원 이상 구매 시 무료배송

15,000원 미만 시 2,500원 배송비 부과

업체배송 상품(전집, GIFT, 음반/DVD 등)
해당 상품 상세페이지 "배송비" 참고 (업체 별/판매자 별 무료배송 기준 다름)
바로드림 오늘배송
업체에서 별도 배송하여 1Box당 배송비 2,500원 부과

1Box 기준 : 도서 10권

그 외 무료배송 기준
바로드림, eBook 상품을 주문한 경우, 플래티넘/골드/실버회원 무료배송쿠폰 이용하여 주문한 경우, 무료배송 등록 상품을 주문한 경우
새벽배송 내일(6/27,금 오전 7시 전) 도착
기본배송지 기준
배송일자 기준 안내
로그인 : 회원정보에 등록된 기본배송지
로그아웃 : '서울시 종로구 종로1' 주소 기준
로그인정확한 배송 안내를 받아보세요!

이달의 꽃과 함께 책을 받아보세요!

1권 구매 시 결제 단계에서 적용 가능합니다.

알림 신청하시면 원하시는 정보를
받아 보실 수 있습니다.

데이터가 뛰어노는 AI 놀이터, 캐글 상세 이미지
데이터 분석 무한 경쟁 ‘캐글’에서 살아남기 위한 비결
세계 최대 규모 데이터 분석 경진 대회 플랫폼인 캐글에서는 일반적이지 않은 데이터 처리 기법이 많이 활용된다. 이를 이해하고 체득하여 활용하는 것은 대회뿐만 아니라 데이터 분석 실무에서도 모델 정확도를 높이는 데 매우 유용하다. 특징(feature)을 만드는 방법, 앙상블, 평가지표, 사이킷런, xgboost 등 기존에는 잘 다루지 않았던 기법과 사례를 이 책 한 권에 정리했다. 경진 대회에 참여할 계획이 있거나, 캐글을 경험해봤지만 더 높은 상위 랭킹에 도전하고 싶다면 지금 바로 읽어보기를 권한다.

작가정보

저자(글) 가도와키 다이스케

Kaggle Competitions Master. 교토대학 졸업 후 생명보험회사에서 보험계리사로 10년간 상품 개발과 리스크 관리 업무에 종사했습니다. 캐글과의 만남을 계기로 경력을 내던지고 캐글 및 데이터 관련 프로그램에 참여 중입니다. 캐글 Walmart Recruiting II: Sales in Stormy Weather 대회에서 우승했으며 캐글 Coupon Purchase Prediction 대회에서 3위 입상했습니다.

저자(글) 사카타 류지

Kaggle Competitions Grand Master. 교토대학 대학원 수료 후 전기 제조업체에 입사하여 데이터 과학자 및 연구원으로 종사했습니다. 2014년부터 데이터 과학과 머신러닝에 흥미가 생겨 캐글을 시작했습니다.

저자(글) 호사카 게이스케

Kaggle Competitions Expert. 도쿄대학 대학원에서 천체 시뮬레이션 연구로 석사 학위를 받았습니다. 데이터 분석 컨설팅 회사에서 10년간 기업의 데이터 분석 지원 업무를 담당했습니다. 이후 대기업 웹서비스 부문에 입사하여 데이터 활용 업무에 종사했습니다. 현재 데이터 과학자 및 머신러닝 엔지니어의 육성과 관리를 맡고 있으며 개인적으로는 육아에 전념 중입니다.

저자(글) 히라마쓰 유지

Kaggle Competitions Master. 도쿄대학 대학원에서 물리학을 전공하고 전기 분야 대기업에 입사했습니다. 이후 금융업계로 이직하여 금융시스템 회사의 파생상품 업무와 대형 손해보험 그룹의 위험회계 업무에 종사했습니다. 현재는 AXA 생명보험의 시니어 데이터 과학자로서 내부 데이터 분석 업무를 담당하고 도쿄대학에 연구원으로 파견되어 의료 데이터를 분석하고 연구합니다. 캐글은 2016년부터 본격적으로 시작했습니다. 곰 인형을 매우 좋아합니다.

번역 대니얼WJ

졸업 후 과감히 해외 취업에 도전했고 일본과 미국의 IT 업계에서 8년간 근무했습니다. 통신사 엔지니어로 일하다가 회사를 그만두고 또다시 새로운 도전으로 교육에 몸담은 지 벌써 5년이 흘렀습니다. 작은 컴퓨터 학원에서 초중고 학생들에게 코딩을 가르치며 내디딘 한걸음을 시작으로 빅데이터 강사를 거쳐 대학원, 대기업, 정부기관 대상으로 강의도 하며 지금까지 왔습니다. 현재는 한 기업의 팀장으로 그리고 빅데이터와 AI 분야 프리랜서 번역가 및 강사로 활동 중입니다. 앞으로는 누군가에게 꿈과 소망을 전달하는 크리스천으로서 작가, 번역가, 교육가로 그리고 한 명의 캐글러로 발걸음을 옮겨봅니다.

목차

  • CHAPTER 1 경진 대회
    1.1 경진 대회란?
    1.2 경진 대회 플랫폼
    1.3 경진 대회 참가부터 종료까지
    1.4 경진 대회의 참가 의미
    1.5 상위권 진입의 중요 팁

    CHAPTER 2 경진 대회의 평가지표
    2.1 경진 대회의 종류
    2.2 경진 대회의 데이터셋
    2.3 평가지표
    2.4 평가지표와 목적함수
    2.5 평가지표의 최적화
    2.6 평가지표 최적화 사례
    2.7 데이터 정보 누출

    CHAPTER 3 특징 생성
    3.1 이 장의 구성
    3.2 모델과 특징
    3.3 결측값 처리
    3.4 수치형 변수 변환
    3.5 범주형 변수 변환
    3.6 날짜 및 시간변수 변환
    3.7 변수의 조합
    3.8 다른 정형 데이터와의 결합
    3.9 집약하여 통계량 구하기
    3.10 시계열 데이터 처리
    3.11 차원축소와 비지도 학습의 특징
    3.12 기타 기법
    3.13 경진 대회의 특징 사례

    CHAPTER 4 모델 구축
    4.1 모델의 기본 이해
    4.2 경진 대회에서 사용하는 모델
    4.3 GBDT
    4.4 신경망
    4.5 선형 모델
    4.6 기타 모델
    4.7 모델의 기타 팁과 테크닉

    CHAPTER 5 모델 평가
    5.1 모델 평가란?
    5.2 검증 방법
    5.3 시계열 데이터의 검증 방법
    5.4 검증 포인트와 기술

    CHAPTER 6 모델 튜닝
    6.1 매개변수 튜닝
    6.2 특징 선택과 중요도
    6.3 편중된 클래스 분포의 대응

    CHAPTER 7 앙상블 기법
    7.1 앙상블이란?
    7.2 간단한 앙상블 기법
    7.3 스태킹
    7.4 앙상블 대상 모델의 선택 기준
    7.5 경진 대회의 앙상블 사례

추천사

  • 캐글 시작에 앞서 든든한 책 한 권이 있어야 한다면 이 책을 추천합니다. 저자가 상당한 내공을 모아 든든한 한 권으로 묶어낸 만큼 다 소화한다면 데이터 관련 대회들이 조금은 쉽게 느껴질 겁니다. 최근 진행 중인 캐글 대회에도 이 책을 적극적으로 활용하면 좋은 성과를 얻을 수 있으리라 생각합니다.

  • 머신러닝을 가장 빨리, 재미있게 학습하는 방법은 캐글 대회에 참여하는 것이라 생각합니다. 그렇지만 입문 대회라도 생각보다 점수를 올리기가 쉽지 않고 대회마다 평가 기준이 달라 입문자로서는 벽이 높게 느껴집니다. 이러한 어려움을 이 책에서는 매우 친절하고 쉽게 설명합니다.

  • 흔히 사용하거나 검색으로 쉽게 찾을 수 있는 방법론 외에 다양한 대안들을 소개하는 유니크한 도서입니다. 특히 각 기법에 대해 상세한 수식과 예제 코드를 함께 제시하여 이해와 활용성을 동시에 잡아 백과사전과 같이 유용합니다. 기본 이론, 방법론 학습은 완료했지만 캐글 상위권 공략을 위해 아직 2% 부족하다고 느껴지는 분들에게 추천합니다.

  • 캐글 최신 트렌드에 뒤처지지 않으면서도 번역상의 문제로 이해가 되지 않는 부분이 없었습니다. 캐글에 관심 있는 분은 물론 실무에서 직접 캐글 코드를 참고하여 모델링을 고려하는 분에게도 추천합니다.

출판사 서평

캐글 상위 랭킹 진입에 필요한 필살기를 한 권에 정리했다!

상당수의 데이터 과학자가 자신의 실력을 검증하고자 ‘캐글’에 도전합니다. 대회에서는 실제 데이터를 이용하기 때문에 일반적이지 않은 데이터 처리 방법과 기법이 많이 활용됩니다. 그러한 내용을 이해하고 스스로 활용할 수 있는 능력을 갖추는 것은 경진 대회는 물론이고 실무에서도 모델을 구현하는 데 많은 도움이 됩니다.

최대한 많은 기술과 사례를 한 권에 담기 위해 노력했습니다. 정형 데이터를 다루는 대회를 대상으로 하여 문제 설정이 명확하게 주어진 가운데 성능이 높은 모델을 만들려면 어떻게 해야 하고 무엇을 주의해야 할지에 초점을 맞추었습니다. 특히 특징을 생성하는 방법, 검증, 파라미터 튜닝 등 다른 도서에서는 잘 다루지 않는 노하우나 포인트도 설명합니다. 처음부터 전부 이해하려 하기보다는 우선 빠르게 읽으면서 관심 있는 부분만 집중적으로 읽는 것을 권합니다. 또는 대회 도중에 힌트가 필요할 때 살짝 보거나 헷갈리는 부분을 사전적으로 참조하여 읽어도 좋습니다.

캐글에 도전하고 싶지만 어떻게 해야 할지 막막하거나, 매번 같은 방법만 사용하여 다른 방법도 알고 싶거나, 더 높은 순위권에 진입하는 것이 목표라면 꼭 읽어야 하는 책입니다. 경진 대회에서 쓰이는 기술은 실무에도 유용하므로 대회에 흥미가 없어도 읽으면 도움이 될 것입니다.

주요 내용
● 정밀도가 높은 모델 구축하기
● 데이터에서 특징 추출하기
● 변수를 변환해 특징 생성하기
● 평가지표를 이용해 예측 결과 최적화하기
● 하이퍼파라미터 튜닝
● 여러 모델을 조합해 예측하는 앙상블 기법과 스태킹(stacking)
● 시계열 데이터 종류와 취급 방법

[추천사]
머신러닝 기초를 공부하고 캐글에 이제 막 발을 내딛는 사람과 캐글 경험이 있지만 대회 코드 작성에 어려움을 느낀 사람에게 훌륭한 길잡이 역할을 해줍니다. 상위권에 랭크된 노트북의 솔루션을 꼼꼼하게 리뷰해준 덕분에 여러 대회에 다양한 기법으로 접근해볼 수 있습니다.
_신홍재, 학생

캐글에 처음 도전할 때 가장 어려운 점은 자신이 수행할 수 있는 스킬과 대회에서 필요한 스킬의 단계 차이가 크게 나는 것이라고 생각합니다. 이 책은 머신러닝 기초부터 다양한 대회에서 기법이 실제로 적용되는 부분까지 세세하게 알려주기 때문에 많은 데이터를 직접 만지며 스킬의 단계 차이를 줄일 수 있습니다.
_이창우, 학생

기본정보

상품정보 테이블로 ISBN, 발행(출시)일자 , 쪽수, 크기, 총권수, 원서(번역서)명/저자명을(를) 나타낸 표입니다.
ISBN 9791162244234
발행(출시)일자 2021년 05월 10일
쪽수 428쪽
크기
183 * 235 * 23 mm / 761 g
총권수 1권
원서(번역서)명/저자명 KAGGLEで勝つデ-タ分析の技術/門脇大輔

Klover

구매 후 리뷰 작성 시, e교환권 200원 적립

10점 중 10점
/쉬웠어요
쉽게 잘 읽히는 책입니다
10점 중 10점
/집중돼요
데이터 분석, 딥러닝과 같은 기술을 다루다 보면 늘 듣게 되는 정보가 캐글에 관련된 정보입니다. 처음 캐글을 접할 때 막막하거나 잘 몰랐던 부분을 이 책을 통해서 이해하고 활용할 수 있게 되었습니다.

문장수집 (0)

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여주는 교보문고의 새로운 서비스입니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 "좋아요“ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보 없이 삭제될 수 있습니다.
리워드 안내
구매 후 90일 이내에 문장수집 작성 시 e교환권 100원을 적립해드립니다.
e교환권은 적립 일로부터 180일 동안 사용 가능합니다. 리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 한 상품에 최초 1회만 제공됩니다.
주문취소/반품/절판/품절 시 리워드 대상에서 제외됩니다.
판매가 5,000원 미만 상품의 경우 리워드 지급 대상에서 제외됩니다. (2024년 9월 30일부터 적용)

구매 후 리뷰 작성 시, e교환권 100원 적립

이 책의 첫 기록을 남겨주세요.

교환/반품/품절 안내

  • 반품/교환방법

    마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환 신청, [1:1 상담 > 반품/교환/환불] 또는 고객센터 (1544-1900)
    * 오픈마켓, 해외배송 주문, 기프트 주문시 [1:1 상담>반품/교환/환불] 또는 고객센터 (1544-1900)
  • 반품/교환가능 기간

    변심반품의 경우 수령 후 7일 이내,
    상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
  • 반품/교환비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
  • 반품/교환 불가 사유

    1) 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
    2) 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
    3) 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
    4) 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
    5) 디지털 컨텐츠인 ebook, 오디오북 등을 1회이상 ‘다운로드’를 받았거나 '바로보기'로 열람한 경우
    6) 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
    7) 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우
    8) 세트상품 일부만 반품 불가 (필요시 세트상품 반품 후 낱권 재구매)
    9) 기타 반품 불가 품목 - 잡지, 테이프, 대학입시자료, 사진집, 방통대 교재, 교과서, 만화, 미디어전품목, 악보집, 정부간행물, 지도, 각종 수험서, 적성검사자료, 성경, 사전, 법령집, 지류, 필기구류, 시즌상품, 개봉한 상품 등
  • 상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는 이메일과 문자로 안내드리겠습니다.
  • 소비자 피해보상 환불 지연에 따른 배상

    1) 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁 해결 기준 (공정거래위원회 고시)에 준하여 처리됨
    2) 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

토막 난 우주를 안고서
이벤트
  • [eBook] 상반기 결산전
  • 여름맞이 건강서 기획전
01 / 02
TOP