본문 바로가기

추천 검색어

실시간 인기 검색어

존 헐의 비즈니스 금융 머신러닝

데이터 사이언스 세계로의 초대 | 2021 세종도서 학술부문 선정도서 | 2 판
에이콘 금융 퀀트 머신러닝 융합 시리즈
존 헐 저자(글) · 이기홍 번역
에이콘출판 · 2021년 03월 29일
10.0
10점 중 10점
(3개의 리뷰)
도움돼요 (100%의 구매자)
  • 존 헐의 비즈니스 금융 머신러닝 대표 이미지
    존 헐의 비즈니스 금융 머신러닝 대표 이미지
  • A4
    사이즈 비교
    210x297
    존 헐의 비즈니스 금융 머신러닝 사이즈 비교 152x228
    단위 : mm
01 / 02
MD의 선택 무료배송 이벤트 소득공제
10% 22,500 25,000
적립/혜택
1,250P

기본적립

5% 적립 1,250P

추가적립

  • 5만원 이상 구매 시 추가 2,000P
  • 3만원 이상 구매 시, 등급별 2~4% 추가 최대 1,250P
  • 리뷰 작성 시, e교환권 추가 최대 300원
배송안내
무료배송
배송비 안내
국내도서/외국도서
도서 포함 15,000원 이상 구매 시 무료배송
도서+사은품 또는 도서+사은품+교보Only(교보굿즈)

15,000원 미만 시 2,500원 배송비 부과

교보Only(교보배송)
각각 구매하거나 함께 20,000원 이상 구매 시 무료배송

20,000원 미만 시 2,500원 배송비 부과

해외주문 서양도서/해외주문 일본도서(교보배송)
각각 구매하거나 함께 15,000원 이상 구매 시 무료배송

15,000원 미만 시 2,500원 배송비 부과

업체배송 상품(전집, GIFT, 음반/DVD 등)
해당 상품 상세페이지 "배송비" 참고 (업체 별/판매자 별 무료배송 기준 다름)
바로드림 오늘배송
업체에서 별도 배송하여 1Box당 배송비 2,500원 부과

1Box 기준 : 도서 10권

그 외 무료배송 기준
바로드림, eBook 상품을 주문한 경우, 플래티넘/골드/실버회원 무료배송쿠폰 이용하여 주문한 경우, 무료배송 등록 상품을 주문한 경우
내일(6/2,월) 도착
기본배송지 기준
배송일자 기준 안내
로그인 : 회원정보에 등록된 기본배송지
로그아웃 : '서울시 종로구 종로1' 주소 기준
로그인정확한 배송 안내를 받아보세요!

이달의 꽃과 함께 책을 받아보세요!

1권 구매 시 결제 단계에서 적용 가능합니다.

알림 신청하시면 원하시는 정보를
받아 보실 수 있습니다.

키워드 Pick

키워드 Pick 안내

관심 키워드를 주제로 다른 연관 도서를 다양하게 찾아 볼 수 있는 서비스로, 클릭 시 관심 키워드를 주제로 한 다양한 책으로 이동할 수 있습니다.
키워드는 최근 많이 찾는 순으로 정렬됩니다.

2021년 세종도서 학술부문 선정도서
회귀분석, 로지스틱 회귀, KNN, 의사결정트리, SVM, 나이브 베이즈, 군집화, 차원축소 등의 다양한 고전적 머신러닝 기법뿐 아니라 신경망과 강화학습의 최신 기법도 최소한의 수학 지식으로 직관적으로 이해할 수 있도록 알려준다. 파생상품 교과서로 유명한 존 헐 교수의 방식대로 어려운 개념을 현실적인 예제와 간단한 수식으로 일반 독자도 잘 이해할 수 있도록 풀어쓴 책이다.
선정 및 수상내역
2021년 세종도서 학술부문 선정도서

이 책의 시리즈 (6)

작가정보

저자(글) 존 헐

John C. Hull
토론토 대학 조셉 엘 로트만 경영대학원의 대학교수다. 이 책을 쓰기 전에 파생상품과 위험관리 분야에서 베스트셀러 3권을 썼다. 그의 책 모두 실무 적용에 초점을 두고 있으며, 저자는 저서가 실무자와 대학 시장에서 동등하게 잘 팔린다는 것을 자랑스럽게 생각한다. 그리고 그는 금융 혁신의 모든 측면에서 연구와 교육 자료를 개발하는 로트맨의 금융 혁신 연구소 핀허브의 학술 이사다. 전 세계의 많은 기업을 위해 자문해 왔고 토론토 대학의 권위 있는 노스럽 프리에 상을 포함한 많은 교수 상을 받았다.

번역 이기홍

카네기멜론 대학교에서 석사 학위를 받았고, 피츠버그 대학교 Finance Ph.D, CFA, FRM이며 금융, 투자, 경제분석 전문가다. 삼성생명, HSBC, 새마을금고 중앙회, 한국투자공사 등과 같은 국내 유수의 금융 기관, 금융 공기업에서 자산운용 포트폴리오 매니저로 근무했으며, 현재 딥러닝과 강화학습을 금융에 접목시켜 이를 전파하고 저변을 확대하는 것을 보람으로 삼고 있다. 저서(공저)로는 『엑셀 VBA로 쉽게 배우는 금융공학 프로그래밍』(한빛미디어, 2009)이 있으며, 번역서로는 『포트폴리오 성공 운용』(미래에셋투자교육연구소, 2010), 『딥러닝 부트캠프 with 케라스』(길벗, 2017), 『프로그래머를 위한 기초 해석학』(길벗, 2018)과 에이콘출판사에서 펴낸 『실용 최적화 알고리즘』(2020), 『초과 수익을 찾아서 2/e』(2020), 『자산운용을 위한 금융 머신러닝』(2020), 『실전 알고리즘 트레이딩 배우기』(2021) 등이 있다. 누구나 자유롭게 머신러닝과 딥러닝을 자신의 연구나 업무에 적용해 활용하는 그날이 오기를 바라며 매진하고 있다.

목차

  • 1장. 소개
    1.1 본서와 부속 자료
    1.2 머신러닝 모델의 종류
    1.3 검증 및 테스트
    1.4 데이터 정제
    __일관성이 없는 기록
    __원하지 않는 관측치
    __중복 관측치
    __특이치
    __결측 데이터
    1.5 베이즈 정리
    __요약
    __짧은 개념 질문
    __연습문제

    2장. 비지도학습
    2.1 특성 스케일링
    2.2 k - 평균 알고리즘
    2.3 k 선택하기
    2.4 차원의 저주
    2.5 국가 위험
    2.6 다른 군집화 접근 방식
    2.7 주성분 분석
    __요약
    __짧은 개념 질문
    __연습문제

    3장. 지도학습: 선형과 로지스틱 회귀
    3.1 선형 회귀: 한 개의 특성
    3.2 선형 회귀: 여러 특성
    __그래디언트 하강 알고리즘
    __다항식 회귀 분석
    __회귀 통계량
    3.3 범주형 특성
    __더미변수 함정
    3.4 규제화
    3.5 릿지 회귀
    3.6 라쏘 회귀
    3.7 일래스틱넷 회귀
    3.8 주택가격 데이터 결과
    3.9 로지스틱 회귀
    3.10 결정 기준
    3.11 신용 결정에 대한 응용
    3.12 k - 최근접 이웃 알고리즘
    __요약
    __짧은 개념 질문
    __연습문제

    4장. 의사결정 트리
    4.1 의사결정 트리의 성격
    4.2 정보 이득 척도
    4.3 신용결정에의 응용
    4.4 나이브 베이즈 분류기
    4.5 연속형 타깃변수
    4.6 앙상블 학습
    __배깅
    __랜덤 포레스트
    __부스팅
    __요약
    __짧은 개념 질문
    __연습문제

    5장. 지도학습: SVM
    5.1 선형 SVM 분류
    5.2 소프트 마진을 위한 수정
    5.3 비선형 분리
    5.4 연속변수 예측
    __요약
    __짧은 개념 질문
    __연습문제

    6장. 지도학습: 신경망
    6.1 단일층 ANN
    6.2 다층 ANN
    6.3 그래디언트 하강 알고리즘
    __다중 파라미터
    6.4 기본방법의 변형
    6.5 종료 규칙
    6.6 블랙 - 숄즈 - 머튼 공식
    6.7 확장
    6.8 오토인코더
    6.9 합성곱 신경망
    6.10 순환 신경망
    __요약
    __짧은 개념 질문
    __연습문제

    7장. 강화학습
    7.1 멀티암드 밴딧 문제
    7.2 변화하는 환경
    7.3 님 게임
    7.4 시차학습
    7.5 딥 Q - 러닝
    7.6 응용
    __요약
    __짧은 개념 질문
    __연습문제

    8장. 자연어 처리
    8.1 데이터 원천
    8.2 전처리
    8.3 단어 주머니 모델
    8.4 나이브 베이즈 분류기의 적용
    8.5 다른 알고리즘의 적용
    8.6 정보 검색
    8.7 다른 자연어 응용
    __요약
    __짧은 개념 질문
    __연습문제

    9장. 모델 해석성
    9.1 선형회귀
    9.2 로지스틱 회귀 분석
    9.3 블랙박스 모델
    9.4 샤플리값
    9.5 라임
    __요약
    __간단한 개념 질문
    __연습문제

    10장. 금융에서의 응용
    10.1 파생상품
    10.2 델타
    10.3 변동성 표면
    10.4 변동성 표면 움직임의 이해
    10.5 헷징을 위한 강화학습 사용
    10.6 확장
    10.7 기타 금융 애플리케이션
    __요약
    __짧은 개념 질문
    __연습문제

    11장. 사회적 이슈
    11.1 데이터 보안성
    11.2 편향
    11.3 윤리
    11.4 투명성
    11.5 적대적 머신러닝
    11.6 법적 이슈
    11.7 인간 대 머신

    __연습문제 해답
    __용어 사전

책 속으로

★ 지은이의 말 ★

대부분의 학생은 머신러닝의 영향력이 점점 더 커지는 세상에서 살아남으려면 머신러닝에 대한 지식이 필요하다는 것을 인지하고 있다. 오늘날, 모든 임원은 컴퓨터를 다루는 방법을 알아야 한다. 더 나아가 가까운 시일 내에 모든 임원은 생산성을 향상시키기 위해 데이터셋을 관리하고 데이터 과학 전문가들과 함께 일하는 것에 익숙해져야 한다.
이 책에서는 행렬이나 벡터 대수학을 사용하지 않았고 미적분학을 사용하지 않았다. 이러한 학문 분야들이 전문가들에게 도움을 줄 수는 있지만, 경험상 대부분의 경영대학 학생들과 경영진들은 수학적인 부분을 불편해했다. 이 책은 데이터 과학자가 가장 많이 사용하는 알고리즘을 설명한다. 이를 통해 독자는 특정 상황에 대한 장단점을 평가하고 데이터 과학 전문가와 함께 생산적으로 작업할 수 있다. 알고리즘은 다양한 데이터셋으로 설명하며, 데이터셋은 저자의 웹사이트(www-2.rotman.utoronto.ca/~hull)에서 다운로드할 수 있다.
엑셀 시트와 파이썬 코드가 데이터셋을 수반한다. 실제로 내가 가르치는 모든 학생은 수업을 듣기 이전에 엑셀에 친숙하다. 저자는 학생들이 파이썬에 대해서도 편하게 다룰 수 있기를 바란다. 학생들은 이미 코딩 기술이 경영의 많은 직업의 전제조건이 되고 있음을 인지하고 있다.
저자의 웹사이트에서 수백 개의 파워포인트 슬라이드를 다운로드할 수 있다. 이 책을 채택하기로 선택한 강사들은 자신의 필요에 맞게 슬라이드를 수정할 수 있다.

★ 옮긴이의 말 ★

머신러닝이 일상용어로 사용되는 현시점에서 경영대에서는 머신러닝을 어떻게 가르쳐야 할까에 대한 의문이 있을 수 있다. 존 헐은 이 책에서 이에 대한 해답을 명쾌하게 제공한다. 본서는 다양한 고전적 머신러닝 기법뿐 아니라 신경망과 강화학습의 최신 기법들도 최소한의 수학지식으로 직관적으로 이해할 수 있도록 소개하고 있다. 파생상품 교과서로 유명한 존 헐 교수의 방식대로, 어려운 개념을 현실적인 예제와 간단한 수식으로 일반 독자들도 잘 이해할 수 있도록 풀어쓴 책으로 생각하면 될 것 같다.
과연 머신러닝이 경영학 특히 금융에 어떻게 적용되는지 현실적인 문제를 더욱 중요하게 다룸으로써 독자들에게 생생하게 다가오고 있다. 또한 최근 가장 뜨거운 주제로 대두되고 있는 머신러닝의 해석성과 사회적 이슈 등의 중요한 문제를 잘 설명하고 있다. 데이터 과학을 경영에서 활용하고자 하는 사람들과 머신러닝을 특히 금융에 적용하고자 하는 사람들에게 입문서로서 최적의 책이 아닌가 생각이 된다.
고급 수학과 현란한 컴퓨터 프로그래밍 기법으로 머신러닝ㆍ딥러닝을 표현할 수도 있지만, 본서와 같이 직관적으로 이해를 할 수 있는 책도 필요하다. 그렇다고 해서 결코 쉽게만 저술한 책이 아니므로, 현재 존재하는 아주 초보적인 책과 고급 수준의 저서의 격차를 메우는 데도 도움이 되리라 본다. 더욱이 본서의 예제들은 존 헐 교수의 홈페이지에서 제공하는 파이썬 코드와 데이터로 실습을 할 수 있어 이해를 더욱 돋울 수 있다고 본다.
많은 사람이 본서로부터 영감을 얻어 실생활, 특히 경영/금융에 데이터 기반의 의사결정체계를 도입하고 그 안에서 머신러닝을 활용하기를 바란다.

출판사 서평

★ 이 책에서 다루는 내용 ★

■ 인기 있는 머신러닝 알고리즘에 대한 명확하고 간결한 설명
■ 머신러닝이 비즈니스에 적용되는 응용 사례
■ 매니저들이 데이터 과학자와 생산적으로 협업하는 데 필요한 지식
■ 데이터, 워크시트와 파이썬 코드 제공

★ 이 책의 대상 독자 ★

경영대학 학생들과 경영진들에게 머신러닝 입문 과정을 가르친 경험을 바탕으로 쓴 책이다. 이 책의 목적은 독자를 데이터 과학자로 전환하기 위한 것이 아니다. 대신 독자들에게 데이터 과학자가 사용하는 도구와 자신이 조직의 목적을 어떻게 진전시킬 수 있는지 이해할 수 있도록 돕는 것이다.

기본정보

상품정보 테이블로 ISBN, 발행(출시)일자 , 쪽수, 크기, 총권수, 시리즈명, 원서(번역서)명/저자명을(를) 나타낸 표입니다.
ISBN 9791161754987
발행(출시)일자 2021년 03월 29일
쪽수 298쪽
크기
152 * 228 * 23 mm / 580 g
총권수 1권
시리즈명
에이콘 금융 퀀트 머신러닝 융합 시리즈
원서(번역서)명/저자명 Machine Learning in Business/Hull, John C.

Klover 리뷰 (3)

구매 후 리뷰 작성 시, e교환권 200원 적립

10점 중 10점
/집중돼요
입문서로 좋습니다.

문장수집 (0)

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여주는 교보문고의 새로운 서비스입니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 "좋아요“ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보 없이 삭제될 수 있습니다.
리워드 안내
구매 후 90일 이내에 문장수집 작성 시 e교환권 100원을 적립해드립니다.
e교환권은 적립 일로부터 180일 동안 사용 가능합니다. 리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 한 상품에 최초 1회만 제공됩니다.
주문취소/반품/절판/품절 시 리워드 대상에서 제외됩니다.
판매가 5,000원 미만 상품의 경우 리워드 지급 대상에서 제외됩니다. (2024년 9월 30일부터 적용)

구매 후 리뷰 작성 시, e교환권 100원 적립

이 책의 첫 기록을 남겨주세요.

교환/반품/품절 안내

  • 반품/교환방법

    마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환 신청, [1:1 상담 > 반품/교환/환불] 또는 고객센터 (1544-1900)
    * 오픈마켓, 해외배송 주문, 기프트 주문시 [1:1 상담>반품/교환/환불] 또는 고객센터 (1544-1900)
  • 반품/교환가능 기간

    변심반품의 경우 수령 후 7일 이내,
    상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
  • 반품/교환비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
  • 반품/교환 불가 사유

    1) 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
    2) 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
    3) 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
    4) 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
    5) 디지털 컨텐츠인 ebook, 오디오북 등을 1회이상 ‘다운로드’를 받았거나 '바로보기'로 열람한 경우
    6) 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
    7) 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우
    8) 세트상품 일부만 반품 불가 (필요시 세트상품 반품 후 낱권 재구매)
    9) 기타 반품 불가 품목 - 잡지, 테이프, 대학입시자료, 사진집, 방통대 교재, 교과서, 만화, 미디어전품목, 악보집, 정부간행물, 지도, 각종 수험서, 적성검사자료, 성경, 사전, 법령집, 지류, 필기구류, 시즌상품, 개봉한 상품 등
  • 상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는 이메일과 문자로 안내드리겠습니다.
  • 소비자 피해보상 환불 지연에 따른 배상

    1) 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁 해결 기준 (공정거래위원회 고시)에 준하여 처리됨
    2) 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

이벤트
  • 미리보는 2025 대선
  • 윌북 브랜드전
01 / 02
TOP