본문 바로가기

추천 검색어

실시간 인기 검색어

Kafka Streams in Action

카프카 스트림즈 API로 만드는 실시간 애플리케이션
윌리엄 베젝 저자(글) · 최중연 , 이재익 번역
에이콘출판 · 2019년 07월 12일
10.0
10점 중 10점
(2개의 리뷰)
도움돼요 (50%의 구매자)
  • Kafka Streams in Action 대표 이미지
    Kafka Streams in Action 대표 이미지
  • A4
    사이즈 비교
    210x297
    Kafka Streams in Action 사이즈 비교 187x235
    단위 : mm
01 / 02
MD의 선택 무료배송 이벤트 소득공제
10% 27,000 30,000
적립/혜택
1,500P

기본적립

5% 적립 1,500P

추가적립

  • 5만원 이상 구매 시 추가 2,000P
  • 3만원 이상 구매 시, 등급별 2~4% 추가 최대 1,500P
  • 리뷰 작성 시, e교환권 추가 최대 300원
배송안내
무료배송
배송비 안내
국내도서/외국도서
도서 포함 15,000원 이상 구매 시 무료배송
도서+사은품 또는 도서+사은품+교보Only(교보굿즈)

15,000원 미만 시 2,500원 배송비 부과

교보Only(교보배송)
각각 구매하거나 함께 20,000원 이상 구매 시 무료배송

20,000원 미만 시 2,500원 배송비 부과

해외주문 서양도서/해외주문 일본도서(교보배송)
각각 구매하거나 함께 15,000원 이상 구매 시 무료배송

15,000원 미만 시 2,500원 배송비 부과

업체배송 상품(전집, GIFT, 음반/DVD 등)
해당 상품 상세페이지 "배송비" 참고 (업체 별/판매자 별 무료배송 기준 다름)
바로드림 오늘배송
업체에서 별도 배송하여 1Box당 배송비 2,500원 부과

1Box 기준 : 도서 10권

그 외 무료배송 기준
바로드림, eBook 상품을 주문한 경우, 플래티넘/골드/실버회원 무료배송쿠폰 이용하여 주문한 경우, 무료배송 등록 상품을 주문한 경우
5/30(금) 출고예정
기본배송지 기준
배송일자 기준 안내
로그인 : 회원정보에 등록된 기본배송지
로그아웃 : '서울시 종로구 종로1' 주소 기준
로그인정확한 배송 안내를 받아보세요!

이달의 꽃과 함께 책을 받아보세요!

1권 구매 시 결제 단계에서 적용 가능합니다.

알림 신청하시면 원하시는 정보를
받아 보실 수 있습니다.

이 책의 이벤트

해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.

키워드 Pick

키워드 Pick 안내

관심 키워드를 주제로 다른 연관 도서를 다양하게 찾아 볼 수 있는 서비스로, 클릭 시 관심 키워드를 주제로 한 다양한 책으로 이동할 수 있습니다.
키워드는 최근 많이 찾는 순으로 정렬됩니다.

스트림 처리를 원하는 모든 개발자를 위한 책이다. 카프카 스트림즈 API로 스트림 처리 프로그램을 빠르고 쉽게 만드는 것부터 시작해서 프로세서 API로 저수준 제어가 가능한 스트림 처리 프로그램도 만들어 본다. 카프카 커넥트를 사용해 기존 데이터소스를 얼마나 쉽게 스트림에 연결할 수 있는지도 살펴본다. 스트림 처리 상태를 저장하는 KTable API를 살펴보고 모니터링, 디버깅 같은 프로덕션 적용 시 고려해야 하는 실질적인 문제도 살펴본다. 마지막으로 프로그래밍 코드를 이해하지 못하는 분석가도 KSQL을 이용해서 실시간 분석을 할 수 있는 방법을 소개한다.

작가정보

저자(글) 윌리엄 베젝

카프카 컨트리뷰터이며, 컨플루언트(Confluent)의 카프카 스트림즈 팀에서 근무한다. 소프트웨어 개발 분야에서 15년 이상 근무했으며, 8년간 백엔드, 특히 다운스트림 고객의 데이터 흐름을 향상하기 위해 카프카를 사용하는 데이터 처리 ingestion 팀에서 대용량 데이터 처리에 초점을 맞춰왔다. 『Getting Started with Google Guava』(Packt, 2013)의 저자이며, ‘Random Thoughts on Coding’(http://codingjunkie.net)의 블로거다.

네이버에서 모니터링 서비스를 개발하고 있으며, 메트릭을 저장하고 처리하기 위해 카프카를 사용하고 있다. 실시간 분석과 이상 탐지에 대한 관심으로 카프카 스트림즈를 접했고 번역하게 됐다. 최근에는 쿠버네티스(Kubernetes) 환경에서 카프카 클러스터 서비스를 준비하고 있다.

번역 이재익

네이버에서 사내 로그 시스템과 일래스틱서치 클러스터 서비스를 개발 및 운영하고 있다. 최근에는 분산 시스템 디버깅과 머신 러닝을 데브옵스(DevOps) 시스템에 활용하는 방법에 관심이 많다. 여가에는 가족들과 캠핑을 하거나 독서를 즐긴다. 공역서로는 에이콘출판사에서 펴낸 『ElasticSearch in Action』(2016), 『일래스틱서치 모니터링』(2017), 『키바나 5.0 배우기』(2017), 『일래스틱서치 쿡북 3/e』(2019)이 있다.

작가의 말

소프트웨어 개발자로서 일하는 동안 흥미로운 프로젝트에서 현재 소프트웨어로 작업할 수 있었던 것은 행운이었다. 처음에는 클라이언트와 백엔드 작업을 함께 시작했다. 하지만 내가 백엔드 작업을 전적으로 좋아한다는 사실을 깨달은 다음에는 백엔드를 내 홈으로 만들었다. 그리고 시간이 지날수록 하둡(pre-1.0 릴리스)에서 시작해 분산 시스템 작업으로 전환했다. 새로운 프로젝트로 넘어가자 카프카를 사용할 기회가 있었다. 카프카에 대한 첫 인상은 매우 간단하게 작업할 수 있고, 굉장한 파워와 유연성을 갖고 있다는 점이었다. 나는 프로젝트 데이터를 전달하기 위해 카프카를 통합하는 방법을 점점 더 많이 찾아냈다. 프로듀서와 컨슈머 작성은 간단했고, 카프카는 시스템의 품질을 향상했다.
그런 다음 카프카 스트림즈에 대해 배웠다. 카프카에서 데이터를 읽기 위해 다른 처리 클러스터가 필요한 이유는 무엇일까? API를 살펴봤을 때 스트림 처리에 필요한 모든 항목(조인, 값 매핑, 리듀스 및 group-by)을 발견했다. 더 중요한 것은 상태를 추가하는 접근법이 내가 그 시점까지 작업한 모든 것보다 우월하다는 점이다.
나는 사람들에게 개념을 간단하고 이해하기 쉬운 방식으로 설명하는 데 열정이 있다. 카프카 스트림즈에 관해 글을 쓸 기회가 왔을 때, 힘들기는 해도 가치 있는 일이라는 사실을 알았다. 카프카 스트림즈가 스트림 처리를 수행하는 간단하지만 우하하고 강력한 방법임을 보여주기 위해 열심히 노력했다.

목차

  • 1부. 카프카 스트림즈 시작하기

    1장. 카프카 스트림즈에 오신 것을 환영합니다
    1.1 빅 데이터로의 전환, 그로 인한 프로그래밍 환경의 변화
    1.1.1 빅 데이터의 기원
    1.1.2 맵리듀스의 중요 개념
    1.1.3 배치 처리로는 충분하지 않다
    1.2 스트림 처리 소개
    1.2.1 스트림 처리를 사용해야 할 경우와 사용하지 말아야 할 경우
    1.3 구매 거래 처리
    1.3.1 스트림 처리 옵션 따져보기
    1.3.2 요구사항을 그래프로 분해
    1.4 구매 트랜잭션에 대한 관점 변경
    1.4.1 소스 노드
    1.4.2 신용카드 마스킹 노드
    1.4.3 패턴 노드
    1.4.4 보상 노드
    1.4.5 스토리지 노드
    1.5 처리 노드의 그래프인 카프카 스트림즈
    1.6 카프카 스트림즈를 구매 거래 흐름에 적용하기
    1.6.1 소스 정의하기
    1.6.2 첫 번째 프로세서: 신용카드번호 마스킹
    1.6.3 두 번째 프로세서: 구매 패턴
    1.6.4 세 번째 프로세서: 고객 보상
    1.6.5 네 번째 프로세서: 구매 레코드 기록하기
    요약

    2장. 빠르게 살펴보는 카프카
    2.1 데이터 문제
    2.2 카프카를 사용해 데이터 다루기
    2.2.1 지마트의 오리지널 데이터 플랫폼
    2.2.2 카프카 판매 거래 데이터 허브
    2.3 카프카 아키텍처
    2.3.1 카프카는 메시지 브로커다
    2.3.2 카프카는 로그다
    2.3.3 카프카에서 로그가 동작하는 방식
    2.3.4 카프카와 파티션
    2.3.5 키에 의한 그룹 데이터 분할
    2.3.6 사용자 정의 파티셔너 작성하기
    2.3.7 사용자 정의 파티셔너 지정하기
    2.3.8 정확한 파티션 수 정하기
    2.3.9 분산 로그
    2.3.10 주키퍼: 리더, 팔로워, 복제
    2.3.11 아파치 주키퍼
    2.3.12 컨트롤러 선출
    2.3.13 복제
    2.3.14 컨트롤러의 책임
    2.3.15 로그 관리
    2.3.16 로그 삭제
    2.3.17 로그 압축
    2.4 프로듀서로 메시지 보내기
    2.4.1 프로듀서 속성
    2.4.2 파티션과 타임스탬프 지정
    2.4.3 파티션 지정
    2.4.4 카프카의 타임스탬프
    2.5 컨슈머로 메시지 읽기
    2.5.1 오프셋 관리
    2.5.2 자동 오프셋 커밋
    2.5.3 수동 오프셋 커밋
    2.5.4 컨슈머 생성하기
    2.5.5 컨슈머와 파티션
    2.5.6 리밸런싱
    2.5.7 더 세분화된 컨슈머 할당
    2.5.8 컨슈머 예제
    2.6 카프카 설치 및 실행
    2.6.1 카프카 로컬 설정
    2.6.2 카프카 실행하기
    2.6.3 첫 번째 메시지 보내기
    요약

    2부. 카프카 스트림즈 개발

    3장. 카프카 스트림즈 개발
    3.1 스트림 프로세서 API
    3.2 카프카 스트림즈를 위한 Hello World
    3.2.1 Yelling App의 토폴로지 생성하기
    3.2.2 카프카 스트림즈 설정
    3.2.3 Serde 생성
    3.3 사용자 데이터로 작업하기
    3.3.1 토폴로지 구성하기
    3.3.2 사용자 정의 Serde 생성하기
    3.4 대화형 개발
    3.5 다음 단계
    3.5.1 새로운 요구사항
    3.5.2 카프카 외부에 레코드 기록하기
    요약

    4장. 스트림과 상태
    4.1 이벤트
    4.1.1 스트림은 상태가 필요하다
    4.2 카프카 스트림즈에 상태를 가진 작업 적용하기
    4.2.1 transformValues 프로세서
    4.2.2 고객 보상의 상태 유지
    4.2.3 값 변환기 초기화
    4.2.4 상태를 사용해 Purchase 객체를 RewardAccumulator에 매핑하기
    4.2.5 보상 프로세서 업데이트
    4.3 조회와 이전에 본 데이터에 상태 저장소 사용하기
    4.3.1 데이터 지역성
    4.3.2 실패 복구와 내결함성
    4.3.3 카프카 스트림즈에서 상태 저장소 사용하기
    4.3.4 추가적인 키/값 저장소 공급자
    4.3.5 상태 저장소의 내결함성
    4.3.6 변경로그 토픽 설정하기
    4.4 추가적인 통찰을 위해 스트림 조인하기
    4.4.1 데이터 설정
    4.4.2 조인을 수행하기 위해 고객 ID를 포함한 키 생성하기
    4.4.3 조인 구성하기
    4.4.4 그 밖의 조인 옵션
    4.5 카프카 스트림즈의 타임스탬프
    4.5.1 제공된 TimestampExtractor 구현
    4.5.2 WallclockTimestampExtractor
    4.5.3 사용자 정의 TimestampExtractor
    4.5.4 TimestampExtractor 명시하기
    요약

    5장. KTable API
    5.1 스트림과 테이블의 관계
    5.1.1 레코드 스트림
    5.1.2 레코드 및 변경로그 업데이트
    5.1.3 이벤트 스트림과 업데이트 스트림 비교
    5.2 레코드 업데이트와 KTable 구성
    5.2.1 캐시 버퍼 크기 설정하기
    5.2.2 커밋 주기 설정하기
    5.3 집계와 윈도 작업
    5.3.1 업계별 거래량 집계
    5.3.2 윈도 연산
    5.3.3 KStream과 KTable 조인하기
    5.3.4 GlobalKTable
    5.3.5 쿼리 가능한 상태
    요약

    6장. 프로세서 API
    6.1 더 높은 수준의 추상화와 더 많은 제어 사이의 트레이드 오프
    6.2 토폴로지를 만들기 위해 소스, 프로세서, 싱크와 함께 작업하기
    6.2.1 소스 노드 추가
    6.2.2 프로세서 노드 추가
    6.2.3 싱크 노드 추가
    6.3 주식 분석 프로세서로 프로세서 API 자세히 살펴보기
    6.3.1 주식 성과 프로세서 애플리케이션
    6.3.2 process() 메소드
    6.3.3 펑추에이터 실행
    6.4 코그룹 프로세서
    6.4.1 코그룹 프로세서 작성
    6.5 프로세서 API와 카프카 스트림즈 API 통합하기
    요약

    3부. 카프카 스트림즈 관리

    7장. 모니터링과 성능
    7.1 기본적인 카프카 모니터링
    7.1.1 컨슈머와 프로듀서 성능 측정
    7.1.2 컨슈머 지연 확인하기
    7.1.3 프로듀서와 컨슈머 가로채기
    7.2 애플리케이션 메트릭
    7.2.1 메트릭 구성
    7.2.2 수집한 메트릭 확인 방법
    7.2.3 JMX 사용
    7.2.4 메트릭 조회
    7.3 추가적인 카프카 스트림즈 디버깅 기술
    7.3.1 애플리케이션 구조 조회
    7.3.2 다양한 애플리케이션 상태 알림 받기
    7.3.3 StateListener 사용
    7.3.4 상태 리스토어 리스너
    7.3.5 uncaught 예외 핸들러
    요약

    8장. 카프카 스트림즈 애플리케이션 테스트
    8.1 토폴로지 테스트
    8.1.1 테스트 만들기
    8.1.2 토폴로지에서 상태 저장소 테스트
    8.1.3 프로세서와 트랜스포머 테스트
    8.2 통합 테스트
    8.2.1 통합 테스트 구축
    요약


    4부. 카프카 스트림즈 고급 개념

    9장. 카프카 스트림즈 고급 애플리케이션

    9.1 카프카와 다른 데이터 소스 통합
    9.1.1 카프카 커넥트로 데이터 통합하기
    9.1.2 카프카 커넥트 셋업
    9.1.3 데이터 변환
    9.2 데이터베이스 제약 걷어내기
    9.2.1 대화식 쿼리 작동 방법
    9.2.2 분산 상태 저장소
    9.2.3 분산 상태 저장소 설정 및 검색
    9.2.4 대화식 쿼리 작성
    9.2.5 쿼리 서버의 내부
    9.3 KSQL
    9.3.1 KSQL 스트림과 테이블
    9.3.2 KSQL 구조
    9.3.3 KSQL 설치 및 실행
    9.3.4 KSQL 스트림 만들기
    9.3.5 KSQL 쿼리 작성
    9.3.6 KSQL 테이블 생성
    9.3.7 KSQL 설정
    요약

    부록 A. 추가적인 구성 정보
    __시작 시 리밸런싱 수 제한하기
    __브로커 중단에 대한 회복력
    __역직렬화 오류 처리
    __애플리케이션 스케일업
    __록스DB 설정
    __미리 토픽 리파티셔닝 만들기
    __내부 토픽 설정
    __카프카 스트리밍 애플리케이션 재설정
    __로컬 상태 클린업

    부록 B. 정확히 한 번의 시맨틱

출판사 서평

★ 이 책에서 다루는 내용 ★

■KStream API 사용하기
■데이터 필터링, 변환 및 분할
■프로세서 API로 작업
■외부 시스템 통합

★ 이 책의 대상 독자 ★

스트림 처리를 원하는 모든 개발자를 대상으로 하는 책이다. 분산 프로그래밍 지식과 카프카에 대한 지식은 필수는 아니지만 유용할 것이다. 숙련된 카프카 개발자뿐만 아니라 새 카프카 개발자도 카프카 스트림즈를 사용해 매력적인 스트림 처리 애플리케이션을 개발하는 방법을 배우게 될 것이다.

★ 이 책의 구성 ★

이 책은 9개의 장에 걸쳐 4개의 부로 나뉘어 있다. 1부에서는 카프카 스트림즈의 정신 모델을 소개해 어떻게 작동하는지 전체적으로 보여준다. 또한 카프카가 필요하거나 리뷰를 원하는 사람들을 위해 카프카의 기초를 제공한다.
■ 1장 ‘카프카 스트림즈 시작하기’에서는 실시간 데이터를 대규모로 처리하기 위해 스트림 처리가 필요한 이유와 방법론의 일부 이력을 제공한다. 또한 카프카 스트림즈의 정신 모델을 제시한다. 어떤 코드도 다루지 않고 카프카 스트림즈의 작동 방식을 설명한다.
■ 2장 ‘빠르게 살펴보는 카프카’ 이 책은 카프카를 처음 접하는 개발자를 위한 입문서다. 카프카에 대한 경험이 많은 사람은 이 장을 건너뛰고 카프카 스트림즈로 들어갈 수 있다.

2부는 카프카 스트림즈로 이동해서 API의 기초부터 시작해 더 복잡한 기능으로 계속 진행한다.
■ 3장 ‘카프카 스트림즈 개발’에서는 Hello World 애플리케이션을 제시하고 좀 더 현실적인 예제인 고급 기능을 포함하는 가상 소매 업체를 위한 애플리케이션 개발을 제시한다.
■ 4장 ’스트림과 상태’에서는 상태에 대해 설명하고 스트리밍 애플리케이션에 필요한 상황을 설명한다. 카프카 스트림즈에서 상태 저장소 구현 및 조인을 수행하는 방법에 대해 배울 것이다.
■ 5장 ‘KTable API’에서는 테이블과 스트림의 이중성을 살펴보고 새로운 개념인 KTable을 소개한다. KStream이 이벤트 스트림인 반면, KTable은 관련된 이벤트 스트림 또는 업데이트 스트림이다.
■ 6장 ‘프로세서 API’에서는 저수준의 프로세서 API에 관해 살펴본다. 지금까지 고수준 DSL로 작업해왔지만 여기서는 애플리케이션의 사용자 정의 부분을 작성해야 할 때 프로세서 API를 사용하는 방법을 배우게 될 것이다.

3부는 카프카 애플리케이션 개발에서 카프카 스트림 관리까지 이동한다.
■ 7장 ‘모니터링과 성능’에서는 카프카 스트림즈 애플리케이션을 테스트하는 방법을 설명한다. 전체 토폴로지를 테스트하고, 단일 프로세서를 유닛을 테스트하며, 통합 테스트에 내장된 카프카 브로커를 사용하는 방법을 배우게 될 것이다.
■ 8장 ‘카프카 스트림즈 애플리케이션 테스트’에서는 레코드를 처리하는 데 걸리는 시간을 확인하고 잠재적인 처리 병목 지점을 찾는 방법을 살펴보면서 카프카 스트림즈 애플리케이션을 모니터링하는 방법을 다룬다.

4부는 카프카 스트림즈의 고급 애플리케이션 개발을 탐구하는 책의 핵심이다.
■ 9장 ‘카프카 스트림즈 고급 애플리케이션’에서는 카프카 커넥트를 사용해 기존 데이터 소스를 카프카 스트림에 통합하는 방법을 다룬다. 스트리밍 애플리케이션에 데이터베이스 테이블을 포함하는 방법을 배울 것이다. 그런 다음, 대화식 쿼리를 사용해 관계형 데이터베이스 없이 카프카 스트림즈를 통해 데이터가 흐르는 동안 시각화 및 대시보드 애플리케이션을 제공하는 방법을 살펴볼 것이다. 9장에서는 또한 KSQL를 소개한다. KSQL은 SQL을 사용해 코드를 작성하지 않고 카프카를 통해 연속 쿼리를 실행할 수 있다.

★ 옮긴이의 말 ★

불과 몇 년 전만 하더라도 주변에 카프카를 쓰는 곳은 많지 않았다. 분석할 데이터는 하둡 파일시스템에 넣고 맵리듀스 작업으로 배치 처리했다. 대용량의 데이터를 서버에 나눠 저장하고 더 빠른 처리가 필요하다면 서버를 더 늘리면 됐고 그것으로 충분할 것 같았다. 그러나 급속히 증가하는 데이터와 저장 및 처리에 드는 시간을 줄이려는 요구 때문에 실시간 또는 준 실시간 처리가 필요해졌다.
링크드인의 카프카 개발자도 하둡과 같은 대용량 데이터의 저장과 처리에 실시간성을 부여해야 했고 그 결과물이 카프카다. 발행/구독 메시지 큐를 제공하는 플랫폼으로서 카프카가 나온 이후 스트림 처리 플랫폼에 있어서 필수 요소로 자리 잡게 됐고, 카프카 사용 사례도 많아졌다. 카프카 스트림즈가 세상에 나오면서 이제는 실시간 스트림 처리가 별도의 스트림 플랫폼 없이도 가능해졌다.
이 책은 카프카 스트림즈로 실시간 애플리케이션을 만들 수 있도록 가상의 프로젝트 목표를 설정하고 단계별로 개선하는 방식으로 쓰여 있다. 운영 시, 겪게 될 다양한 이슈와 해결 방법 및 모니터링 방법도 포함하고 있어, 카프카 스트림즈를 시작하는 독자뿐만 아니라 이미 운영하는 독자에게도 도움이 될 것이다.

기본정보

상품정보 테이블로 ISBN, 발행(출시)일자 , 쪽수, 크기, 총권수, 원서(번역서)명/저자명을(를) 나타낸 표입니다.
ISBN 9791161753263
발행(출시)일자 2019년 07월 12일
쪽수 360쪽
크기
187 * 235 * 27 mm / 843 g
총권수 1권
원서(번역서)명/저자명 Kafka Streams in Action/Bejeck, William P., Jr.

Klover 리뷰 (2)

구매 후 리뷰 작성 시, e교환권 200원 적립

10점 중 10점
/도움돼요
술술 잘 읽힙니다. 강추
10점 중 10점
/쉬웠어요
필요하던 책입니다. 좋네요

문장수집 (0)

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여주는 교보문고의 새로운 서비스입니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 "좋아요“ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보 없이 삭제될 수 있습니다.
리워드 안내
구매 후 90일 이내에 문장수집 작성 시 e교환권 100원을 적립해드립니다.
e교환권은 적립 일로부터 180일 동안 사용 가능합니다. 리워드는 작성 후 다음 날 제공되며, 발송 전 작성 시 발송 완료 후 익일 제공됩니다.
리워드는 한 상품에 최초 1회만 제공됩니다.
주문취소/반품/절판/품절 시 리워드 대상에서 제외됩니다.
판매가 5,000원 미만 상품의 경우 리워드 지급 대상에서 제외됩니다. (2024년 9월 30일부터 적용)

구매 후 리뷰 작성 시, e교환권 100원 적립

이 책의 첫 기록을 남겨주세요.

교환/반품/품절 안내

  • 반품/교환방법

    마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환 신청, [1:1 상담 > 반품/교환/환불] 또는 고객센터 (1544-1900)
    * 오픈마켓, 해외배송 주문, 기프트 주문시 [1:1 상담>반품/교환/환불] 또는 고객센터 (1544-1900)
  • 반품/교환가능 기간

    변심반품의 경우 수령 후 7일 이내,
    상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
  • 반품/교환비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
  • 반품/교환 불가 사유

    1) 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
    2) 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
    3) 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
    4) 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
    5) 디지털 컨텐츠인 ebook, 오디오북 등을 1회이상 ‘다운로드’를 받았거나 '바로보기'로 열람한 경우
    6) 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
    7) 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우
    8) 세트상품 일부만 반품 불가 (필요시 세트상품 반품 후 낱권 재구매)
    9) 기타 반품 불가 품목 - 잡지, 테이프, 대학입시자료, 사진집, 방통대 교재, 교과서, 만화, 미디어전품목, 악보집, 정부간행물, 지도, 각종 수험서, 적성검사자료, 성경, 사전, 법령집, 지류, 필기구류, 시즌상품, 개봉한 상품 등
  • 상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는 이메일과 문자로 안내드리겠습니다.
  • 소비자 피해보상 환불 지연에 따른 배상

    1) 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁 해결 기준 (공정거래위원회 고시)에 준하여 처리됨
    2) 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

이벤트
  • [교보eBook 19주년] 생일 파티에 초대합니다! 🎉
  • 미리보는 2025 대선
01 / 02
TOP