본문내용 바로가기
무료배송 이벤트 사은품 소득공제

주머니 속의 머신러닝 파이썬으로 구조적 데이터 다루기

제이펍의 인공지능 시리즈 31
맷 해리슨 지음 | 박찬성 옮김 | 제이펍 | 2021년 04월 30일 출간
클로버 리뷰쓰기
  • 정가 : 15,000원
    판매가 : 13,500 [10%↓ 1,500원 할인]
  • 혜택 :
    [기본적립] 750원 적립 [5% 적립] [추가적립] 5만원 이상 구매 시 2,000원 추가적립 안내 [회원혜택] 회원 등급 별, 3만원 이상 구매 시 2~4% 추가적립 안내 [리뷰적립] 리뷰 작성 시 e교환권 최대 300원 추가적립 안내
  • 추가혜택 : 포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 배송일정 : 서울특별시 종로구 세종대로 기준 지역변경
    당일배송 지금 주문하면 오늘(21일,월) 도착 예정 배송일정 안내
  • 바로드림 : 인터넷으로 주문하고 매장에서 직접 수령 안내 바로드림 혜택
    휴일에는 바로드림 픽업으로 더 빨리 받아 보세요. 바로드림 혜택받고 이용하기

이 책의 이벤트

해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.
  • 제이펍 IT 도서 구매 시 스마트 클리너(키보드 덮개) 사은품 ..
    2020.08.19 ~ 2021.06.30
  • 책을 통해 성장해나가는 개발자를 응원합니다.
    2017.06.22 ~ 2025.07.31
  • 새로운 파이썬 책을 발견해보세요! 전체 목록 다운로드 제공!
    2016.08.11 ~ 2021.12.31
  • MANNING, O'REILLY, PACKT, WILE..
    2016.03.07 ~ 2022.12.31
상품상세정보
ISBN 9791191600001(1191600009)
쪽수 332쪽
크기 129 * 188 * 20 mm /329g 판형알림
이 책의 원서/번역서 Machine Learning Pocket Reference / Matt Harrison

책소개

이 책이 속한 분야

머신러닝의 길잡이가 되어줄 Quick Reference!

인공지능을 구현하는 방법론 중 하나인 머신러닝에 대해 알아야 할 수학 공식이나 통계 지식이 너무 많아 압도될 때가 있습니다.
이 책은 이런 고민을 해결해 주는 책입니다. 너무 복잡하고 어려운 과정을 추상화해서 쉽게 사용하고 싶다거나, 알고리즘의 복잡한 내부를 바닥까지 이해하지는 못하더라도 머신러닝 알고리즘을 가져와 내 데이터에 바로 적용해 보고 싶을 때 사용할 수 있는 도구들을 소개하고 그 활용 방법을 알려줍니다.

다양한 데이터 분석기법 및 시각화 방법을 함축적 내용으로 소개하여, 옆에 두고 보면서 궁금한 것이 생겼을 때 찾아보는 용도로도 좋습니다.

상세이미지

주머니 속의 머신러닝(제이펍의 인공지능 시리즈 31) 도서 상세이미지

목차

CHAPTER 1 소개
1.1 사용된 라이브러리 2
1.2 Pip을 이용한 설치 5
1.3 Conda를 이용한 설치 7

CHAPTER 2 머신러닝 과정에 대한 개요

CHAPTER 3 분류 문제 둘러보기: 타이타닉 데이터셋
3.1 프로젝트 구조의 제안 11
3.2 필요한 패키지 12
3.3 질문을 하자 13
3.4 데이터에 관한 용어 14
3.5 데이터의 수집 15
3.6 데이터의 정리 16
3.7 특징의 생성 24
3.8 샘플 데이터 27
3.9 데이터의 대치 27
3.10 데이터의 표준화 29
3.11 리팩터링 30
3.12 베이스라인 모델 31
3.13 다양한 알고리즘 32
3.14 스태킹 34
3.15 모델 만들기 35
3.16 모델의 평가 36
3.17 모델의 최적화 37
3.18 오차 행렬 38
3.19 ROC 곡선 40
3.20 학습 곡선 41
3.21 모델의 배포 42

CHAPTER 4 누락된 데이터
4.1 누락된 데이터의 분석 46
4.2 누락된 데이터의 삭제 50
4.3 데이터의 대치 51
4.4 지시자 열의 추가 52

CHAPTER 5 데이터의 정리
5.1 열의 이름 53
5.2 누락된 값의 교체 54

CHAPTER 6 탐색
6.1 데이터의 크기 57
6.2 요약 통계 58
6.3 히스토그램 59
6.4 산점도 60
6.5 조인트 플롯 61
6.6 쌍 격자 63
6.7 박스 플롯과 바이올린 플롯 65
6.8 두 순서형 값의 비교 66
6.9 상관관계 68
6.10 라드비즈 72
6.11 평행 좌표 74

CHAPTER 7 데이터 전처리
7.1 표준화 77
7.2 범위 조정 79
7.3 더미 변수 80
7.4 레이블 인코더 82
7.5 프리퀀시 인코딩 83
7.6 문자열에서 범주 가져오기 83
7.7 그 밖의 범주형 인코딩 85
7.8 날짜형 데이터의 특징 공학 88
7.9 col_na 특징의 추가 89
7.10 수동적 특징 공학 90

CHAPTER 8 특징의 선택
8.1 공선성을 가진 열 94
8.2 라소 회귀 97
8.3 재귀적 특징 제거 99
8.4 상호 정보량 100
8.5 주성분 분석 102
8.6 특징 중요도 102

CHAPTER 9 불균형 범주의 문제
9.1 다른 평가 지표 사용하기 103
9.2 트리 기반 알고리즘과 앙상블 103
9.3 모델에 페널티 부과하기 104
9.4 소수집단 데이터 업샘플링하기 105
9.5 소수집단 데이터 생성하기 106
9.6 과반수집단 데이터를 다운샘플링하기 106
9.7 업샘플링 후 다운샘플링하기 108

CHAPTER 10 분류
10.1 로지스틱 회귀 111
10.2 나이브 베이즈 116
10.3 서포트 벡터 머신 118
10.4 K-최근접 이웃 122
10.5 디시전 트리 125
10.6 랜덤 포레스트 134
10.7 XGBoost 139
10.8 LightGBM을 사용한 그래디언트 부스팅 150
10.9 TPOT 156

CHAPTER 11 모델 선택
11.1 검증 곡선 161
11.2 학습 곡선 163

CHAPTER 12 분류용 평가 지표로 평가하기
12.1 오차 행렬 165
12.2 평가 지표 168
12.3 정확도 170
12.4 재현율 171
12.5 정밀도 171
12.6 F1 171
12.7 분류 보고서 172
12.8 ROC 173
12.9 정밀도-재현율 곡선 174
12.10 누적 이득 도표 175
12.11 리프트 곡선 177
12.12 범주의 균형 179
12.13 범주 예측 오류 180
12.14 차별 임계치 181

CHAPTER 13 모델 설명
13.1 회귀 계수 183
13.2 특징 중요도 184
13.3 LIME 184
13.4 트리 기반 모델의 해석 186
13.5 부분 의존성 도표 187
13.6 대리 모델 191
13.7 SHAP 192

CHAPTER 14 회귀
14.1 베이스라인 모델 200
14.2 선형 회귀 200
14.3 SVM 204
14.4 K-최근접 이웃 207
14.5 디시전 트리 209
14.6 랜덤 포레스트 216
14.7 XGBoost 회귀 220
14.8 LightGBM 회귀 분석 227

CHAPTER 15 회귀용 평가 지표로 평가하기
15.1 평가 지표 233
15.2 잔차 도표 236
15.3 이분산성 237
15.4 정규 잔차 238
15.5 예측 오차 도표 240

CHAPTER 16 회귀 모델의 해석
16.1 SHAP 243

CHAPTER 17 차원성 감소
17.1 PCA 250
17.2 UMAP 269
17.3 t-SNE 275
17.4 PHATE 279

CHAPTER 18 클러스터링
18.1 K-평균 285
18.2 응집 클러스터링 293
18.3 클러스터의 이해 296

CHAPTER 19 파이프라인
19.1 분류 파이프라인 303
19.2 회귀 파이프라인 306
19.3 PCA 파이프라인 307

책 속으로

이 책에서는 다양한 라이브러리를 사용한다. 이는 장점인 동시에 단점일 수 있다. 이들 중 일부는 설치가 까다롭거나 다른 라이브러리 버전과 충돌 문제가 발생할 수 있다. 모든 라이브러리를 설치해야 하는 것은 아니며, 필요한 라이브러리를 상황에 맞게 ‘그때그때 설치’하면 된다. _2p

이번에 다룰 예제에서는 질문에 대답을 하는 예측 모델을 만들고자 한다. 타이타닉호 참사에서의 생존 여부는 탑승객 및 여행의 특징으로 분류할 것이다. 간단한 프로젝트이지만, 여러 모델링 단계를 보여 주는 교육적인 도구로서의 역할을 할 것이다. 우리가... 더보기

출판사 서평

이 책의 특징
머신러닝을 배울 때 참고하며 읽기 좋은 책
도구의 종류, 사용 방법, 각종 파라미터 등을 빠르게 훑으며 기억을 상기할 수 있는 좋은 레퍼런스 자료
머신러닝 모델의 구성 요소, 데이터와 모델의 평가 및 분석을 다양한 도구로 접근해 다각적으로 바라보는 방법을 제시

이 책의 대상 독자
머신러닝에 관심 있는 프로그래머
머신러닝의 방법론을 정립하고 싶은 분
머신러닝의 개념을 다시 한번 정리하고 싶은 분
머신러닝의 다양한 라이브러리와 시각화 방법을 알고 싶은 분

북카드

1/6

Klover 리뷰 (0)

북로그 리뷰 (2) 전체보기 쓰러가기

북로그 리뷰는 본인 인증 후 작성 가능합니다.
책이나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 내용은 비공개 처리 될 수 있습니다.
※ 북로그 리뷰 리워드 제공 2021. 4. 1 종료
  • 주머니 속의 머신러닝 na**mjjang | 2021-06-15 | 추천: 0 | 5점 만점에 5점
    머신러닝의 자주 활용하는 스킬 80%를 20%의 분량으로 요약한 듯한 느낌을 주는 일종의  머신러닝 사전 이다. 마치 국어사전, 영한사전과 같이 필요한 스킬의 가장 중요한 핵심 개념과 활용법을 빠르게 찾아 적용해 볼 수 있으며 컴팩트한 사이즈라 휴대하기도 좋고 새롭게 알게된 주요 기법들을 메모하며 스스로의 실무 지식이나 캐글 등의 경진대회에 활용할 지식들을  단권화 하기에도 좋다. 가로 세로 사이즈는 서점에서 볼 수 있는 책 중에서 가장 작은 A4사이즈의 절반도 안된다고 보면 되며 약... 더보기
  • 주머니 속의 머신러닝 ne**ecide | 2021-05-10 | 추천: 0 | 5점 만점에 5점
    머신러닝은 인공 지능의 한 분야로, 컴퓨터가 학습할 수 있도록 하는 알고리즘과 기술을 개발하는 분야 입니다. 책은 보통 가방에 넣고 다닙니다. 도서관, 이동하면서, 집에서도 책을 봅니다. 머신러닝을 공부하고 싶은 분들에게 책 한 권을 추천하고자 합니다. 간단하게 외출하고 싶을 때는 가방 없이 나가게 되는데요. 나가서도 쉽게 볼 수 있도록 주머니에 들어갈 만한 크기의 책이 나왔습니다. 책 제목은 ‘주머니 속의 머신러닝’입니다. ... 더보기

문장수집 (0) 문장수집 쓰기 나의 독서기록 보기
※구매 후 문장수집 작성 시, 리워드를 제공합니다. 안내

교환/반품/품절안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품/품절안내
반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
[1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
    또는 고객센터 (1544-1900)
반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유
  • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
  • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
  • 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
  • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
  • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
    해당되는 경우
(1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①서양도서-판매정가의 12%, ②일본도서-판매정가의 7%를 적용)
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
이메일과 문자로 안내드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
  • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
    소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
  • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
    소비자 보호에 관한 법률에 따라 처리함

이 책의 원서/번역서

안내
바로가기
  • 우측 확장형 배너 2
  • 우측 확장형 배너 2
최근 본 상품