본문내용 바로가기
MD의선택 무료배송 이벤트 사은품 소득공제

혼자 공부하는 머신러닝+딥러닝

박해선 지음 | 한빛미디어 | 2020년 12월 21일 출간
클로버 리뷰쓰기

이 책의 다른 상품 정보

  • 정가 : 26,000원
    판매가 : 23,400 [10%↓ 2,600원 할인]
  • 혜택 :
    [기본적립] 1300원 적립 [5% 적립] [추가적립] 5만원 이상 구매 시 2,000원 추가적립 안내 [회원혜택] 회원 등급 별, 3만원 이상 구매 시 2~4% 추가적립 안내 [리뷰적립] 리뷰 작성 시 e교환권 최대 300원 추가적립 안내
  • 추가혜택 : 포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 배송일정 : 서울특별시 종로구 세종대로 기준 지역변경
    지금 주문하면 내일(27일,화) 도착 예정 배송일정 안내
  • 바로드림 : 인터넷으로 주문하고 매장에서 직접 수령 안내 바로드림 혜택
    휴일에는 바로드림 픽업으로 더 빨리 받아 보세요. 바로드림 혜택받고 이용하기

이 책의 이벤트

해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.
  • 한빛미디어 IT도서 3만원 이상 구매시 카드지갑 선택 가능
    2021.07.23 ~ 2021.08.31
  • 오라일리 동물 스티커 선택(행사도서 3만원 이상 구매시)
    2021.07.16 ~ 소진시까지
  • IT 행사도서 포함 3만원 이상 구매시 개발자 책꽂이 사은품 선..
    2021.07.16 ~ 2021.08.31
  • 1,000원 교환권 증정 (북커버리 작가의 서재 구경시)
    2021.07.16 ~ 2021.08.20
  • 2021년 상반기, 개발자는 이 책을 읽었다.
    2021.07.01 ~ 2021.07.31
  • 개발자 테크스택 90종 홀로그램 스티커
    2021.04.28 ~ 2021.07.30
  • 혼자 공부하는 노트 선택(행사 도서 구매시)
    2021.01.19 ~ 2021.08.31
  • 마우스패드 A, B 선택(행사 도서 구매시)
    2020.09.17 ~ 2021.07.31
  • 책을 통해 성장해나가는 개발자를 응원합니다.
    2017.06.22 ~ 2025.07.31
상품상세정보
ISBN 9791162243664(116224366X)
쪽수 580쪽
크기 188 * 258 * 35 mm /1269g 판형알림

책소개

이 책이 속한 분야

이 책의 주제어

혼자 해도 충분하다! 1:1 과외하듯 배우는 인공지능 자습서
이 책은 수식과 이론으로 중무장한 머신러닝, 딥러닝 책에 지친 ‘독학하는 입문자’가 ‘꼭 필요한 내용을 제대로’ 학습할 수 있도록 구성했다. 구글 머신러닝 전문가(Google ML expert)로 활동하고 있는 저자는 여러 차례의 입문자들과 함께한 머신러닝&딥러닝 스터디와 번역ㆍ집필 경험을 통해 ‘무엇을’ ‘어떻게’ 학습해야 할지 모르는 입문자의 막연함을 이해하고, 과외 선생님이 알려주듯 친절하게 핵심적인 내용을 콕콕 집어준다. 컴퓨터 앞에서 〈손코딩〉을 따라하고, 확인 문제를 풀다 보면 그간 어렵기만 했던 머신러닝과 딥러닝을 개념을 스스로 익힐 수 있을 것이다!

- 베타리더가 함께 만든 입문서
베타리딩 과정을 통해 입문자에게 적절한 난이도, 분량, 학습 요소 등을 고민하고 반영했다. 어려운 용어와 개념은 한 번 더 풀어 쓰고, 복잡한 설명은 눈에 잘 들어오는 그림으로 풀어 냈다. ‘혼자 공부해본’ 여러 입문자의 마음과 눈높이가 책 곳곳에 반영된 것이 이 책의 가장 큰 장점이다.

목차

Chapter 01 나의 첫 머신러닝 ▶ 이 생선의 이름은 무엇인가요?
__ 01-1 인공지능과 머신러닝, 딥러닝 ▶ 인공지능과 머신러닝, 딥러닝은 무엇일까요?
____ 인공지능이란
____ 머신러닝이란
____ 딥러닝이란
____ 키워드로 끝내는 핵심 포인트
____ 이 책에서 배울 것은
__ 01-2 코랩과 주피터 노트북 ▶ 코랩과 주피터 노트북으로 손코딩 준비하기
____ 구글 코랩
____ 텍스트 셀
____ 코드 셀
____ 노트북
____ 키워드로 끝내는 핵심 포인트
____ 표로 정리하는 툴바와 마크다운
____ 확인 문제
__ 01-3 마켓과 머신러닝 ▶ 마켓을 예로 들어 머신러닝을 설명합니다.
____ 생선 분류 문제
____ 첫 번째 머신러닝 프로그램
____ [문제해결 과정] 도미와 빙어 분류
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제

Chapter 02 데이터 다루기 ▶ 수상한 생선을 조심하라!
__ 02-1 훈련 세트와 테스트 세트 ▶ 모델을 훈련 시키는 훈련 세트와 검증하는 테스트 세트로 나누어 학습하기
____ 지도 학습과 비지도 학습
____ 훈련 세트와 테스트 세트
____ 샘플링 편향
____ 넘파이
____ 두 번째 머신러닝 프로그램
____ [문제해결 과정] 훈련 모델 평가
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 02-2 데이터 전처리 ▶ 정교한 결과 도출을 위한 데이터 전처리 알아보기
____ 넘파이로 데이터 준비하기
____ 사이킷런으로 훈련 세트와 테스트 세트 나누기
____ 수상한 도미 한 마리
____ 기준을 맞춰라
____ 전처리 데이터로 모델 훈련하기
____ [문제해결 과정] 스케일이 다른 특성 처리
____ 키워드로 끝나는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제

Chapter 03 회귀 알고리즘과 모델 규제 ▶ 농어의 무게를 예측하라!
__ 03-1 k-최근접 이웃 회귀 ▶ 회귀 문제를 이해하고 k-최근접 이웃 알고리즘으로 풀어 보기
____ k-최근접 이웃 회귀
____ 데이터 준비
____ 결정계수(R2)
____ 과대적합 vs 과소적합
____ [문제해결 과정] 회귀 문제 다루기
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 03-2 선형 회귀 ▶ 사이킷런으로 선형 회귀 모델 만들어 보기
____ k-최근접 이웃의 한계
____ 선형 회귀
____ 다항 회귀
____ [문제해결 과정] 선형 회귀로 훈련 세트 범위 밖의 샘플 예측
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 03-3 특성 공학과 규제 ▶ 특성 공학과 규제 알아보기
____ 다중 회귀
____ 데이터 준비
____ 사이킷런의 변환기
____ 다중 회귀 모델 훈련하기
____ 규제
____ 릿지 회귀
____ 라쏘 회귀
____ [문제해결 과정] 모델의 과대적합을 제어하기
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제

Chapter 04 다양한 분류 알고리즘 ▶ 럭키백의 확률을 계산하라!
__ 04-1 로지스틱 회귀 ▶ 로지스틱 회귀 알고리즘을 배우고 이진 분류 문제에서 클래스 확률 예측하기
____ 럭키백의 확률
____ 로지스틱 회귀
____ [문제해결 과정] 로지스틱 회귀로 확률 예측
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 04-2 확률적 경사 하강법 ▶ 경사 하강법 알고리즘을 이해하고 대량의 데이터에서 분류 모델을 훈련하기
____ 점진적인 학습
____ SGDClassifier
____ 에포크와 과대/과소적합
____ [문제해결 과정] 점진적 학습을 위한 확률적 경사 하강법
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제

Chapter 05 트리 알고리즘 ▶ 화이트 와인을 찾아라!
__ 05-1 결정 트리 ▶ 결정 트리 알고리즘을 사용해 새로운 분류 문제 다루기
____ 로지스틱 회귀로 와인 분류하기
____ 결정 트리
____ [문제해결 과정] 이해하기 쉬운 결정 트리 모델
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 05-2 교차 검증과 그리드 서치 ▶ 검증 세트가 필요한 이유를 이해하고 교차 검증해 보기
____ 검증 세트
____ 교차 검증
____ 하이퍼파라미터 튜닝
____ [문제해결 과정] 최적의 모델을 위한 하이퍼파라미터 탐색
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 05-3 트리의 앙상블 ▶ 앙상블 학습을 알고 실습해 보기
____ 정형 데이터와 비정형 데이터
____ 랜덤 포레스트
____ 엑스트라 트리
____ 그레이디언트 부스팅
____ 히스토그램 기반 그레이디언트 부스팅
____ [문제해결 과정] 앙상블 학습을 통한 성능 향상
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제

Chapter 06 비지도 학습 ▶ 비슷한 과일끼리 모으자!
__ 06-1 군집 알고리즘 ▶ 흑백 이미지 분류 방법과 비지도 학습, 군집 알고리즘 이해하기
____ 과일 사진 데이터 준비하기
____ 픽셀값 분석하기
____ 평균값과 가까운 사진 고르기
____ [문제해결 과정] 비슷한 샘플끼리 모으기
____ 키워드로 끝내는 핵심 포인트
____ 확인 문제
__ 06-2 k-평균 ▶ k-평균 알고리즘 작동 방식을 이해하고 비지도 학습 모델 만들기
____ k-평균 알고리즘 소개
____ KMeans 클래스
____ 클러스터 중심
____ 최적의 k 찾기
____ [문제해결 과정] 과일을 자동으로 분류하기
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 06-3 주성분 분석 ▶ 차원을 알고 차원 축소 알고리즘 PC 모델 만들기
____ 차원과 차원 축소
____ 주성분 분석 소개
____ PCA 클래스
____ 원본 데이터 재구성
____ 설명된 분산
____ 다른 알고리즘과 함께 사용하기
____ [문제해결 과정] 주성분 분석으로 차원 축소
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제

Chapter 07 딥러닝을 시작합니다 ▶ 패션 럭키백을 판매합니다!
__ 07-1 인공 신경망 ▶ 텐서플로로 간단한 인공 신경망 모델 만들기
____ 패션 MNIST
____ 로지스틱 회귀로 패션 아이템 분류하기
____ 인공 신경망
____ 인공 신경망으로 모델 만들기
____ 인공 신경망으로 패션 아이템 분류하기
____ [문제해결 과정] 인공 신경망 모델로 성능 향상
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 07-2 심층 신경망 ▶ 인공 신경망에 층을 추가하여 심층 신경망 만들어 보기
____ 2개의 층
____ 심층 신경망 만들기
____ 층을 추가하는 다른 방법
____ 렐루 활성화 함수
____ 옵티마이저
____ [문제해결 과정] 케라스 API를 활용한 심층 신경망
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 07-3 신경망 모델 훈련 ▶ 인공 신경망 모델 훈련의 모범 사례 학습하기
____ 손실 곡선
____ 검증 손실
____ 드롭아웃
____ 모델 저장과 복원
____ 콜백
____ [문제해결 과정] 최상의 신경망 모델 얻기
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제

Chapter 08 이미지를 위한 인공 신경망 ▶ 패션 럭키백의 정확도를 높입니다!
__ 08-1 합성곱 신경망의 구성 요소 ▶ 합성곱 신경망의 개념과 동작 원리를 배우고 간단한 실습하기
____ 합성곱
____ 케라스 합성곱 층
____ 합성곱 신경망의 전체 구조
____ [문제해결 과정] 합성곱 층과 풀링 층 이해하기
____ 키워드로 끝내는 핵심 포인트
____ 확인 문제
__ 08-2 합성곱 신경망을 사용한 이미지 분류 ▶ 케라스 API로 합성곱 신경망 모델 만들기
____ 패션 MNIST 데이터 불러오기
____ 합성곱 신경망 만들기
____ 모델 컴파일과 훈련
____ [문제해결 과정] 케라스 API로 합성곱 신경망 구현
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 08-3 합성곱 신경망의 시각화 ▶ 신경망이 이미지에서 학습하는 게 무엇인지 이해하기
____ 가중치 시각화
____ 함수형 API
____ 특성 맵 시각화
____ [문제해결 과정]
____ 시각화로 이해하는 합성곱 신경망
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제

Chapter 09 텍스트를 위한 인공 신경망 ▶ 한빛 마켓의 댓글을 분석하라!
__ 09-1 순차 데이터와 순환 신경망 ▶ 순차 데이터의 특징과 개념 이해하기
____ 순차 데이터
____ 순환 신경망
____ 셀의 가중치와 입출력
____ [문제해결 과정] 순환 신경망으로 순환 데이터 처리
____ 키워드로 끝내는 핵심 포인트
____ 확인 문제
__ 09-2 순환 신경망으로 IMDB 리뷰 분류하기 ▶ 텐서플로 순환 신경망으로 영화 리뷰 분류하기
____ IMDB 리뷰 데이터셋
____ 순환 신경망 만들기
____ 순환 신경망 훈련하기
____ 단어 임베딩을 사용하기
____ [문제해결 과정] 케라스 API로 순환 신경망 구현
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 09-3 LSTM과 GRU 셀 ▶ 순환 신경망의 중요 기술을 사용해 모델 만들어 보기
____ LSTM 구조
____ LSTM 신경망 훈련하기
____ 순환층에 드롭아웃 적용하기
____ 2개의 층을 연결하기
____ GRU 구조
____ GRU 신경망 훈련하기
____ [문제해결 과정] LSTM과 GRU 셀로 훈련
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제

__ 부록 A 한발 더 나아가기
__ 부록 B 에필로그

____ 정답 및 해설
____ 찾아보기

출판사 서평

[특징]
하나, 탄탄한 학습 설계 : ‘입문자 맞춤형 7단계 구성’을 따라가며 체계적으로 반복 학습한다
이 책은 머신러닝과 딥러닝의 핵심 내용을 7단계에 걸쳐 반복 학습하면서 자연스럽게 머릿속에 기억되도록 구성했다. 모든 절에서 [핵심 키워드]와 [시작하기 전에]를 통해 각 절의 주제에 대한 대표 개념을 워밍업한 후, 이론과 실습을 거쳐 마무리에서는 [핵심 포인트]와 [확인 문제]로 한번에 복습한다. ‘혼자 공부할 수 있는’ 커리큘럼을 그대로 믿고 끝까지 따라가다 보면 인공지능 공부가 난생 처음인 입문자도 무리 없이 책을 끝까... 더보기

Klover 리뷰 (0)

북로그 리뷰 (3) 전체보기 쓰러가기

북로그 리뷰는 본인 인증 후 작성 가능합니다.
책이나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 내용은 비공개 처리 될 수 있습니다.
※ 북로그 리뷰 리워드 제공 2021. 4. 1 종료
  • Apple SD Gothic Neo"; font-size: medium;">ϻ Apple SD Gothic Neo"; font-size: medium;"> 해당 포스트는 한빛미디어에서 서적을 제공받아 작성했습니다. Apple SD Gothic N... 더보기
  • 혼자 공부하는 머신러닝 + 딥러닝 책을 읽어보았다. 요즘 대세의 기술이 머신러닝, 딥러닝 기술인데 상당한 기술의 발전으로 인해 수요가 많아졌고 공급이 늘어나는 추세이다. 인공지능의 연구는 사실상 엄청 오래된 기술이고, 이 기술로 활용해 이전 부터 체스에서 여러번 기술시도를 하였다. 머신러닝을 사회적으로 각인 시키는 계기가 알파고를 통해 가능성을 많이 열어 주었고 이 기술 자체로는 러닝커브가 심한 것은 누구나 알고 있다. 수 많은 학회의 논술과 기업의 참여로 인하여 하루에도 몇개씩 쏟아지는 논문이 많고 이 기술을 활용도는 아직은 초기... 더보기
  • 예전 알파고 vs 이세돌 이후로 인공지능에 대한 관심이 상당히 많아졌다. 하지만 인공지능이 정확히 무엇인지, 어떻게 배워서 써먹을지에 대해서는 아무도 알려주지 않는다. 그런 분들을 위하여 나온 책이 바로 혼공머신! 혼공머신은 단순히 AI에 대해서만 설명하는 책이 아닌, 머신러닝, 딥러닝 등과 차이점이 무엇인지에 대해 이야기해주는 책이다. 인공지능의 역사에 대해서, 그리고 머신 러닝과 딥러닝, 인공 신경망 등 다양한 용어들에 대해 천천히 알려주고 있다.   이 책은 그렇다고 맨땅에서 시작하는 것을 권하지 ... 더보기

문장수집 (0) 문장수집 쓰기 나의 독서기록 보기
※구매 후 문장수집 작성 시, 리워드를 제공합니다. 안내

교환/반품/품절안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품/품절안내
반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
[1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
    또는 고객센터 (1544-1900)
반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유
  • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
  • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
  • 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
  • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
  • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
    해당되는 경우
(1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①서양도서-판매정가의 12%, ②일본도서-판매정가의 7%를 적용)
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
이메일과 문자로 안내드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
  • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
    소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
  • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
    소비자 보호에 관한 법률에 따라 처리함
바로가기
  • 우측 확장형 배너 2
  • 우측 확장형 배너 2
최근 본 상품