본문내용 바로가기
MD의선택 무료배송 이벤트 사은품 소득공제

9가지 사례로 익히는 고급 스파크 분석 현실 세계 빅데이터로 배우는 데이터 과학과 머신러닝

2판
샌디 라이자 , 유리 레이저슨 , 션 오언 , 조시 윌스 지음 | 박상은 , 권한철 , 서양주 옮김 | 한빛미디어 | 2018년 03월 05일 출간 (1쇄 2016년 07월 01일)
클로버 리뷰쓰기
  • 정가 : 26,000원
    판매가 : 23,400 [10%↓ 2,600원 할인]
  • 혜택 :
    [기본적립] 1300원 적립 [5% 적립] [추가적립] 5만원 이상 구매 시 2,000원 추가적립 안내 [회원혜택] 회원 등급 별, 3만원 이상 구매 시 2~4% 추가적립 안내 [리뷰적립] 리뷰 작성 시 e교환권 최대 300원 추가적립 안내
  • 추가혜택 : 포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 개정정보 : 이 도서는 가장 최근에 출간된 개정판입니다. 2016년 07월 출간된 구판이 있습니다. 구판 보기
  • 배송일정 : 서울특별시 종로구 세종대로 기준 지역변경
    08월 16일 출고 예정 배송일정 안내
  • 바로드림 : 인터넷으로 주문하고 매장에서 직접 수령 안내 바로드림 혜택
    휴일에는 바로드림 픽업으로 더 빨리 받아 보세요. 바로드림 혜택받고 이용하기

이 책의 이벤트

해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.
  • 컴퓨터/IT분야 2만원 이상 구매 시 개발자 매거진 <리드..
    2022.08.13 ~ 2022.10.31
  • 한빛미디어 IT도서 구매 시 메모리게임 카드pack 선택가능
    2022.01.10 ~ 2022.08.31
  • 새로 출간된 O'Reilly 번역서를 확인해보세요!
    2019.06.14 ~ 2022.12.31
  • MANNING, O'REILLY, PACKT, WILE..
    2016.03.07 ~ 2022.12.31
상품상세정보
ISBN 9791162240526(1162240520)
쪽수 332쪽
크기 184 * 236 * 15 mm /579g 판형알림
이 책의 원서/번역서 Advanced Analytics with Spark / Hougland, Juliet

책소개

이 책이 속한 분야

다양한 현실 세계 예제로 스파크 2의 진면목을 경험한다.
이 책은 독자에게 대량의 데이터셋을 가지고 스파크 2를 활용해 복잡한 분석과 머신러닝 학습을 실제로 해보는 생생한 느낌을 전달한다. 단순히 모델을 구축하고 평가하는 데 그치지 않고, 데이터 정제부터 전처리, 데이터 조사, 실제 제품을 만들기까지의 전체 파이프라인을 보여준다. 이러한 과정을 다양한 분야에서 가져온 현실 예제에 맞게 교차 최소 제곱 추천 알고리즘, 의사 결정 나무, K-평균 군집화, 숨은 의미 분석, 세션화, 몬테카를로 시뮬레이션 등의 기법을 동원해 풀어본다.

목차

1장. 빅데이터 분석하기
1.1 데이터 과학의 어려움
1.2 아파치 스파크란
1.3 이 책에 관하여
1.4 2판에 관하여

2장. 스칼라와 스파크를 활용한 데이터 분석
2.1 데이터 과학자를 위한 스칼라
2.2 스파크 프로그래밍 모델
2.3 레코드 링크
2.4 스파크 셸과 SparkContext 시작하기
2.5 클러스터에서 클라이언트로 데이터 가져오기
2.6 클라이언트에서 클러스터로 코드 보내기
2.7 RDD에서 Data Frame으로
2.8 DataFrame API로 데이터 분석하기
2.9 데이터프레임에 대한 빠른 요약 통계
2.10 데이터프레임의 축 회전과 형태변환
2.11 데이터프레임을 결합하고 특징 선택하기
2.12 실제 환경을 위한 모델 준비하기
2.13 모델 평가
2.14 한 걸음 더 나아가기

3장. 음악 추천과 Audioscrobbler 데이터셋
3.1 데이터셋
3.2 교차 최소 제곱 추천 알고리즘
3.3 데이터 준비하기
3.4 첫 번째 모델 만들기
3.5 추천 결과 추출 검사하기
3.6 추천 품질 평가하기
3.7 AUC 계산하기
3.8 하이퍼파라미터 선택하기
3.9 추천 결과 만들기
3.10 한 걸음 더 나아가기

4장. 의사 결정 나무로 산림 식생 분포 예측하기
4.1 회귀로 돌아와서
4.2 벡터와 특징
4.3 학습 예제
4.4 의사 결정 나무와 랜덤 포레스트
4.5 Covtype 데이터셋
4.6 데이터 준비하기
4.7 첫 번째 의사 결정 나무
4.8 의사 결정 나무 하이퍼파라미터
4.9 의사 결정 나무 튜닝하기
4.10 범주형 특징 다시 살펴보기
4.11 랜덤 포레스트
4.12 예측하기
4.13 한 걸음 더 나아가기

5장. K-평균 군집화로 네트워크 이상 탐지하기
5.1 이상 탐지
5.2 K-평균 군집화
5.3 네트워크 침입
5.4 KDD 컵 1999 데이터셋
5.5 첫 번째 군집화하기
5.6 k 선정하기
5.7 R에서 시각화하기
5.8 특징 정규화
5.9 범주형 변수
5.10 엔트로피와 함께 레이블 활용하기
5.11 군집화하기
5.12 한 걸음 더 나아가기

6장. 숨은 의미 분석으로 위키백과 이해하기
6.1 문서-단어 행렬
6.2 데이터 구하기
6.3 파싱하여 데이터 준비하기
6.4 표제어 추출
6.5 단어빈도-역문서빈도(TF-IDF) 계산하기
6.6 특잇값 분해
6.7 중요한 의미 찾기
6.8 낮은 차원 표현에 대한 의문과 고찰
6.9 단어와 단어 사이의 연관도
6.10 문서와 문서 사이의 연관도
6.11 문서와 단어 사이의 연관도
6.12 여러 개의 단어로 질의하기
6.13 한 걸음 더 나아가기

7장. 그래프엑스로 동시발생 네트워크 분석하기
7.1 네트워크 분석 사례: MEDLINE의 인용 색인
7.2 데이터 구하기
7.3 스칼라 XML 라이브러리로 XML 문서 파싱하기
7.4 MeSH 주요 주제와 주제들의 동시발생 분석하기
7.5 그래프엑스로 동시발생 네트워크 구성하기
7.6 네트워크의 구조 이해하기
7.7 관련성 낮은 관계 필터링하기
7.8 작은 세상 네트워크
7.9 한 걸음 더 나아가기

8장. 뉴욕 택시 운행 데이터로 위치 및 시간 데이터 분석하기
8.1 데이터 얻기
8.2 스파크에서 서드파티 라이브러리로 작업하기
8.3 지리 데이터와 Esri Geometry API, 그리고 Spray
8.4 뉴욕 택시 운행 데이터 준비하기
8.5 스파크에서 세션화 작업 수행하기
8.6 한 걸음 더 나아가기

9장. 몬테카를로 시뮬레이션으로 금융 리스크 추정하기
9.1 전문 용어
9.2 VaR 계산 방법
9.3 우리의 모델
9.4 데이터 구하기
9.5 전처리하기
9.6 요인 가중치 결정하기
9.7 표본추출
9.8 실험 실행하기
9.9 수익 분포 시각화하기
9.10 결과 평가하기
9.11 한 걸음 더 나아가기

10장. BDG 프로젝트와 유전체학 데이터 분석하기
10.1 모델링과 저장소를 분리하기
10.2 ADAM CLI를 이용한 유전체학 데이터 처리
10.3 ENCODE 데이터로부터 전사인자 결합 부위 예측하기
10.4 1000 지놈 프로젝트에서 유전자형 질의하기
10.5 한 걸음 더 나아가기

11장. 파이스파크와 썬더로 신경 영상 데이터 분석하기
11.1 파이스파크 소개
11.2 썬더 라이브러리 개요와 설치
11.3 썬더로 데이터 읽어 들이기
11.4 썬더로 신경 세포 유형 분류하기
11.5 한 걸음 더 나아가기

추천사

마테이 자하리아(스파크 창시자)

버클리에서 스파크 프로젝트를 시작한 이래로, 나는 단순히 빠른 병렬 시스템을 구축한다는 사실보다는 점점 더 많은 사람이 대규모 컴퓨팅을 사용할 수 있게 돕는다는 점에 흥분해왔다. 데이터 과학 전문가 네 명이 스파크 기반의 고... 더보기

이상훈(한국 스파크 사용자 모임 운영자)

아파치 스파크는 빅데이터 영역에서 가장 핫한 기술로, 범용적이면서 빠른 대용량 분산 처리를 지원한다. 또한 기초 데이터 분석부터 머신러닝 등의 기능까지 지원하게 되면서 개발자만의 오픈 소스에서 분석가를 위한 오픈 소스로 주목... 더보기

최홍용(현대오토에버)

교통, 금융 분야 등의 실제 데이터로 데이터 획득, 전처리, 가중치 결정, 실행, 평가 그리고 시각화까지 해볼 수 있는 스파크 활용서다. 스파크 입문을 넘어 실무에 적용하려 할 때 좋은 참고서다. 자신의 관심 도메인에 맞는 ... 더보기

출판사 서평

스파크 2 실전편! 실무와 가장 가까운 경험을 제공한다.

이 책은 기능과 API를 단조롭게 나열하지 않는다. 현실과 동떨어진, 예제를 위한 예제를 따라 하지도 않는다. 대신 우리 주변에서 찾을 수 있고 우리 삶과 밀접한 실제 데이터를 가져와 함께 분석하고 다듬어본다. 그것도 하나가 아니라 9가지다. 음악 추천부터 이상 탐지, 교통, 금융, 영상 데이터 등 관심 가는 장을 먼저 봐도 좋고, 차례대로 천천히 따라 해도 좋다. 그럼 가장 진보한 분석 도구인 스파크 2로 다 함께 데이터의 바다를 항해해보자!

2판에 관하여
1... 더보기

Klover 리뷰 (0)

북로그 리뷰 (2) 전체보기 쓰러가기

북로그 리뷰는 본인 인증 후 작성 가능합니다.
책이나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 내용은 비공개 처리 될 수 있습니다.
※ 북로그 리뷰 리워드 제공 2021. 4. 1 종료
  • 9가지 사례로 익히는 고급 스파크 분석(2판) 스파크를 경험해봤거나 사용 중이지만 좀 더 다양한 방식을 통해 데이터 분석을 하고자 하는 사람이라면 이 책을 읽어보는 것을 적극적으로 추천한다. 데이터 분석을 위해서 아파치 스파크에 입문하긴 했으나, 매일 비슷한 상황에서의 분석으로 지쳐 있는 사람이라면, 이 책에 나온 9가지 사례에 대한 내용을 보다 보면 새로운 시각으로 데이터를 볼 수 있는 눈을 키우는 데 도움이 될 거라 생각된다. 보통은 하나의 시스템에서 데이터를 분석하므로 매번 쓰던 방식만 사용하고, 데... 더보기
  • 대량의 데이터셋을 다루는 복잡한 분석을 스파크로 사용해 보는 좋은 기회를 주는 책이다. Python, Java를 많이 사용하는데, 이 책은 스칼라 로 구현되어 살짝 당황 했지만, 스칼라 를 사용하는데 충분한 예시가 주어져 있고, 스칼라를 공부하는 계기가 된것 같습니다. 또한 스파크 스칼라로 구현 되어있기에 스파크가 조금더 친숙하게 다가 온 것 같습니다. 책의 내용은 다양한 예제로 구성되어 있고 스파크 2.0 과 1.x 버전대의 바뀐점도 중간중간 설명이 되어있어 1.x 버전대의 사용자들이 2.x 버전대로 로 책의 예제를 실행한다 하... 더보기

문장수집 (0) 문장수집 쓰기 나의 독서기록 보기
※구매 후 문장수집 작성 시, 리워드를 제공합니다. 안내

스토리K

1건의 스토리K가 있습니다.

    교환/반품/품절안내

    ※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

    교환/반품/품절안내
    반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
    [1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

    ※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
        또는 고객센터 (1544-1900)
    반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
    상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
    반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    반품/교환 불가 사유
    • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
      (단지 확인을 위한 포장 훼손은 제외)
    • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
      예) 화장품, 식품, 가전제품(악세서리 포함) 등
    • 복제가 가능한 상품 등의 포장을 훼손한 경우
      예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
    • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
    • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
    • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
    • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
      해당되는 경우
    (1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①서양도서-판매정가의 12%, ②일본도서-판매정가의 7%를 적용)
    상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
    이메일과 문자로 안내드리겠습니다.
    소비자 피해보상
    환불지연에 따른 배상
    • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
      소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
    • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
      소비자 보호에 관한 법률에 따라 처리함

    이 책의 원서/번역서

    안내
    바로가기
    • 우측 확장형 배너 2
    • 우측 확장형 배너 2
    최근 본 상품