본문내용 바로가기
MD의선택 무료배송 이벤트 소득공제

실전 예제로 배우는 GAN 파이썬, 텐서플로, 케라스로 다양한 GAN 아키텍처를 구축하고 활용하기

데이터 사이언스 시리즈 38
조시 칼린 지음 | 박진수 옮김 | 위키북스 | 2019년 07월 24일 출간
클로버 리뷰쓰기

이 책의 다른 상품 정보

  • 정가 : 25,000원
    판매가 : 22,500 [10%↓ 2,500원 할인]
  • 혜택 :
    [기본적립] 1250원 적립 [5% 적립] [추가적립] 5만원 이상 구매 시 2,000원 추가적립 안내 [회원혜택] 회원 등급 별, 3만원 이상 구매 시 2~4% 추가적립 안내 [리뷰적립] 리뷰 작성 시 e교환권 최대 300원 추가적립 안내
  • 추가혜택 : 포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 배송일정 : 서울특별시 종로구 세종대로 기준 지역변경
    당일배송 지금 주문하면 오늘(15일,토) 도착 예정 배송일정 안내
  • 바로드림 : 인터넷으로 주문하고 매장에서 직접 수령 안내 바로드림 혜택
    휴일에는 바로드림 픽업으로 더 빨리 받아 보세요. 바로드림 혜택받고 이용하기

이 책의 이벤트

해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.
  • 책을 통해 성장해나가는 개발자를 응원합니다.
    2017.06.22 ~ 2025.07.31
  • 새로운 파이썬 책을 발견해보세요! 전체 목록 다운로드 제공!
    2016.08.11 ~ 2021.12.31
상품상세정보
ISBN 9791158391652(115839165X)
쪽수 260쪽
크기 187 * 240 * 19 mm /603g 판형알림
이 책의 원서/번역서 Generative Adversarial Networks Cookbook / Kalin, Josh

책소개

이 책이 속한 분야

이 책의 주제어

파이썬, 텐서플로, 케라스를 사용해 강력한 생성 모델을 구현함으로써 차세대 딥러닝을 간소화한다!
생성적 적대 신경망(GAN) 개발 작업은 복잡할 뿐만 아니라, 이해하기 쉬운 코드를 찾기도 어렵다. 이 책에서는 CycleGAN, simGAN, DCGAN 및 2차원 이미지로 3차원 형상을 생성하는 모델과 같은 여덟 가지 최신 GAN 구현 예제를 소개한다. 각 장마다 파이썬, 텐서플로, 케라스의 공통 아키텍처를 바탕으로 쉽게 구축할 수 있는 GAN 아키텍처를 읽기 쉬운 형태로 탐구해 보는 데 도움이 되는 유용한 방법을 담고 있다.

모델의 작동 방식을 이해할 수 있게 다양한 GAN 아키텍처 유형을 다루는 일부터 DCGAN, Pix2Pix 등과 관련된 사용 사례를 다루는 데 도움이 되는 직관적인 방법들이 들어 있다. 또한 바로 구현해 볼 수 있는 코드 기반 솔루션을 제공하는 덕분에, GAN 모델을 사용하면서 부딪히는 문제를 해결하거나 도전에 대응할 수 있는 실질적인 도움을 얻게 될 것이다.

목차

▣ 01장: 생성적 적대 신경망이란?
들어가며
생성 모델과 판별 모델
__ 수행 방법 …
____판별 모델링
____생성 모델링
__ 작동 방식 …
신경망의 사랑 싸움
__ 수행 방법 …
__ 작동 방식 …
심층 신경망
__ 수행 방법 …
__ 작동 방식 …
아키텍처 구조의 기초
__ 수행 방법 …
__ 작동 방식 …
기본 빌딩 블록: 생성기
__ 수행 방법 …
__ 작동 방식 …
기본 빌딩 블록: 판별기
__ 수행 방법 …
__ 작동 방식 …
기본 빌딩 블록: 손실 함수
__ 수행 방법 …
__ 작동 방식 …
훈련
__ 수행 방법 …
__ 작동 방식 …
서로 다른 방식으로 모아 쓰는 GAN의 각 부분들
__ 수행 방법 …
__ 작동 방식 …
GAN의 출력
__ 수행 방법 …
__ 작동 방식 …
한정된 데이터로 일하기: 화풍 모사
____새로운 장면을 꿈꾸기: DCGAN
____모조 데이터로 보강하기: SimGAN
GAN 구조의 이점
__ 수행 방법 …
__ 작동 방식 …
연습문제

▣ 02장: 데이터 중심, 용이한 환경, 데이터 준비
들어가며
데이터가 그다지도 중요한가?
__ 출발 준비
__ 수행 방법 …
__ 작동 방식 …
__ 더 많은 정보 …
개발 환경 설정
__ 출발 준비
__ 수행 방법 …
____GPU를 구동할 엔비디아 드라이버 설치하기
____Nvidia-Docker를 설치하기
____개발용 컨테이너 만들기
__ 더 많은 정보
데이터 형식
__ 출발 준비
__ 수행 방법 …
__ 작동 방식 …
____코드를 도커 컨테이너에서 실행하기
__ 더 많은 정보 …
데이터 전처리
__ 출발 준비
__ 수행 방법 …
__ 작동 방식 …
__ 더 많은 정보 …
비정상 데이터
__ 출발 준비
__ 수행 방법 …
____단변량 방법
__ 더 많은 정보 …
데이터 균형조절
__ 출발 준비
__ 수행 방법 …
____표본추출 기법
____앙상블 기법
__ 더 많은 정보 …
데이터 확대
__ 출발 준비
__ 수행 방법 …
__ 작동 방식 …
__ 더 많은 정보 …
연습문제

▣ 03장: 첫 번째 GAN을 100줄 이내로 만들기
들어가며
이론에서 코드로: 간단한 예제를 만들어 보기
__ 출발 준비
__ 수행 방법 …
____Discriminator 기저 클래스
____Generator 기저 클래스
____GAN 기저 클래스
__관련 정보
케라스와 텐서플로를 사용해 신경망을 구축하기
__ 출발 준비
__ 수행 방법 …
____도커 컨테이너 만들기
__관련 정보
첫 번째 GAN 구성요소인 판별기를 설명하기
__ 출발 준비
__ 수행 방법 …
____가져오기
____초기화 변수(판별기 클래스 내의 init)
____판별기에 대한 모델 정의
____판별기 클래스의 도우미 메서드
____두 번째 GAN 구성요소인 생성기를 설명하기
__ 출발 준비
__ 수행 방법 …
____가져오기
GAN의 모든 부분을 종합하기
__ 출발 준비
__ 작동 방식 …
____1단계: GAN 클래스 초기화
____2단계: 모델 정의
____3단계: 도우미 함수
여러분의 첫 GAN을 훈련하기
__ 출발 준비
__ 수행 방법 …
____훈련 클래스 정의
____실행 스크립트를 정의하기
모델을 훈련하고 GAN의 출력을 이해하기
__ 출발 준비
__ 수행 방법 …
__ 작동 방식 …
연습문제

▣ 04장: DCGAN을 이용한 새 외부 구조물에 대한 꿈
들어가며
DCGAN이란 무엇인가? 간단한 의사코드 예제
__ 출발 준비
__ 수행 방법 …
____생성기
____ 관련 정보
도구: 독특한 도구가 필요할까?
__ 출발 준비
__ 수행 방법 …
____DCGAN 개발 환경
____LSUN 데이터를 내려받아 압축을 풀기
__ 더 많은 정보 …
____ 관련 정보
데이터 파싱: 데이터가 독특한가?
__ 출발 준비
__ 수행 방법 …
코드 구현: 생성기
__ 출발 준비
__ 수행 방법 …
____생성기 초기화: DCGAN 업데이트
____DCGAN 구조 구축
__ 관련 정보
코드 구현: 판별기
__ 출발 준비
__ 수행 방법 …
판별기 클래스 초기화
모델 구조를 구축하기
__ 관련 정보
훈련
__ 출발 준비
__ 수행 방법 …
____클래스 초기화로 변경
____의사코드에서 변경한 사항을 이해하기
____새롭고 향상된 훈련 스크립트
____파이썬의 run 스크립트
____셸의 run 스크립트
평가: 코드가 작동하는지를 어떻게 알 수 있는가?
__ 출발 준비
__ 작동 방식 …
성능 향상을 위한 파라미터 조절
__ 수행 방법 …
____훈련 파라미터
____판별기 및 생성기 아키텍처 파라미터
연습문제

▣ 05장: Pix2Pix를 사용해 이미지를 변환하기
들어가며
의사코드로 맛보는 Pix2Pix
__ 출발 준비
__ 수행 방법 …
____판별기
____생성기
데이터셋 파싱
__ 출발 준비
__ 수행 방법 …
____새로운 Dockerfile을 사용해 도커 컨테이너를 만들기
____보조 스크립트 작성
코드 구현: 생성기
__ 출발 준비
__ 수행 방법 …
코드: GAN 신경망
__ 출발 준비
__ 수행 방법 …
코드 구현: 판별기
__ 출발 준비
__ 작동 방식 …
훈련
__ 출발 준비
__ 수행 방법 …
____클래스 설정
____훈련 메서드
____결과를 그리기
____도우미 함수
____훈련 스크립트 실행
연습문제

▣ 06장: CycleGAN을 사용해 화풍을 모사하기
들어가며
의사코드: 어떻게 작동하는가?
__ 출발 준비
__ 수행 방법 …
____CycleGAN은 어떤 점이 강력한가?
CycleGAN 데이터셋 파싱
__ 출발 준비
__ 수행 방법 …
____도커 구현
____데이터 내려받기 스크립트
____실제 데이터는 어떻게 보일까?
코드 구현: 생성기
__ 출발 준비
__ 수행 방법 …
코드 구현: 판별기
__ 출발 준비
__ 수행 방법 …
코드 구현: GAN
__ 출발 준비
__ 수행 방법 …
훈련 시작
__ 출발 준비
__ 수행 방법 …
____초기화
____훈련 메서드
____도우미 메서드
연습문제

▣ 07장: SimGAN에서 모조 이미지를 사용해 사실적인 눈동자 사진을 생성하기
들어가며
SimGAN 아키텍처의 작동 원리
__ 출발 준비
__ 수행 방법 …
의사코드: 어떻게 작동하는가?
__ 출발 준비
__ 수행 방법 …
훈련 데이터로 작업하는 방법
__ 출발 준비
__ 수행 방법 …
____Kaggle과 API
____도커 이미지 만들기
____도커 이미지 실행하기
코드 구현: 손실 함수
__ 출발 준비
__ 수행 방법 …
코드 구현: 생성기
__ 출발 준비
__ 수행 방법 …
____상용구 항목
____모델 개발
____도우미 함수
코드 구현: 판별기
__ 출발 준비
__ 수행 방법 …
____상용구
____모델 아키텍처
____도우미 함수
코드 구현: GAN
__ 출발 준비
__ 수행 방법 …
SimGAN 신경망 훈련
__ 출발 준비
__ 수행 방법 …
____초기화
____훈련 함수
____도우미 함수
____파이썬 실행 스크립트
____셸 실행 스크립트
연습문제

▣ 08장: GAN을 사용해 이미지를 3차원 모델로 만들기
들어가며
3D 모델 제작을 위해 GAN 사용 소개
__ 출발 준비
__ 수행 방법 …
____2D 이미지의 경우: 이미지의 인코딩 공간 학습
____3D 합성곱을 사용해 모델을 훈련하기
환경 준비
__ 출발 준비
__ 수행 방법 …
____도커 컨테이너 만들기
____도커 컨테이너 만들기
2D 데이터 인코딩 및 3D 객체와 짝짓기
__ 출발 준비
__ 수행 방법 …
____간단한 인코더를 실행하는 코드
____도커 컨테이너로 인코더를 실행하는 셸 스크립트
코드 구현: 생성기
__ 출발 준비
__ 수행 방법 …
____생성기 클래스 준비
____생성기 모델 구축
코드 구현: 판별기
__ 출발 준비
__ 수행 방법 …
____판별기 클래스 준비
____판별기 모델 구축
코드 구현: GAN
__ 출발 준비
__ 수행 방법 …
이 모델을 훈련하기
__ 출발 준비
__ 수행 방법 …
____훈련 클래스 준비
____도우미 함수
____훈련 메서드
____신경망의 출력을 그려내기
____훈련 스크립트 실행
연습문제

출판사 서평

★ 이 책에서 다루는 내용 ★

◎ 한 가지 GAN 아키텍처의 구조를 의사코드로 배운다
◎ 구축할 각 GAN 모델의 공통 아키텍처를 이해한다
◎ 텐서플로와 케라스를 사용해 다양한 GAN 아키텍처를 구현해 본다
◎ 서로 다른 데이터셋을 사용해 GAN 모델에서 신경망 기능을 활성화해 본다.
◎ 다양한 GAN 모델을 결합하고 해당 모델들을 미세하게 조정하는 방법을 배운다
◎ 2차원 이미지를 가져와서 3차원 형상으로 만들어 내는 모델을 제작해 본다.
◎ Pix2Pix를 사용해 GAN을 개발함으로써 화풍을 모사하게 해 본다.

Klover 리뷰 (0)

북로그 리뷰 (0) 쓰러가기

북로그 리뷰는 본인 인증 후 작성 가능합니다.
책이나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 내용은 비공개 처리 될 수 있습니다.
※ 북로그 리뷰 리워드 제공 2021. 4. 1 종료

문장수집 (0) 문장수집 쓰기 나의 독서기록 보기
※구매 후 문장수집 작성 시, 리워드를 제공합니다. 안내

교환/반품/품절안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품/품절안내
반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
[1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
    또는 고객센터 (1544-1900)
반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유
  • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
  • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
  • 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
  • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
  • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
    해당되는 경우
(1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①서양도서-판매정가의 12%, ②일본도서-판매정가의 7%를 적용)
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
이메일과 문자로 안내드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
  • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
    소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
  • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
    소비자 보호에 관한 법률에 따라 처리함

바로가기

  • 우측 확장형 배너 2
  • 우측 확장형 배너 2

최근 본 상품