본문내용 바로가기
MD의선택 무료배송 이벤트 사은품 소득공제

정석으로 배우는 딥러닝 텐서플로와 케라스로 배우는 시계열 데이터 처리 알고리즘

위키북스 데이터 사이언스 시리즈 8
스고모리 유우스케 지음 | 김범준 옮김 | 손민규 감수 | 위키북스 | 2017년 11월 23일 출간
클로버 리뷰쓰기
  • 정가 : 27,000원
    판매가 : 24,300 [10%↓ 2,700원 할인]
  • 혜택 :
    [기본적립] 1350원 적립 [5% 적립] [추가적립] 5만원 이상 구매 시 2,000원 추가적립 안내 [회원혜택] 회원 등급 별, 3만원 이상 구매 시 2~4% 추가적립 안내 [리뷰적립] 리뷰 작성 시 e교환권 최대 300원 추가적립 안내
  • 추가혜택 : 포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 배송일정 : 서울특별시 종로구 세종대로 기준 지역변경
    당일배송 지금 주문하면 오늘(18일,화) 도착 예정 배송일정 안내
  • 바로드림 : 인터넷으로 주문하고 매장에서 직접 수령 안내 바로드림 혜택
    휴일에는 바로드림 픽업으로 더 빨리 받아 보세요. 바로드림 혜택받고 이용하기

이 책의 이벤트

해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.
  • 행사도서 포함 2만원 이상 구매 시
    2021.04.28 ~ 2021.05.28
  • 책을 통해 성장해나가는 개발자를 응원합니다.
    2017.06.22 ~ 2025.07.31
상품상세정보
ISBN 9791158390822(1158390823)
쪽수 332쪽
크기 186 * 240 * 27 mm /740g 판형알림
이 책의 원서/번역서 詳解 ディ-プラ-ニング ~TensorFlow Kerasによる時系列デ-タ?理 / 巢籠悠輔

책소개

이 책이 속한 분야

『정석으로 배우는 딥러닝』은 단순 퍼셉트론부터 시작해서 다층 퍼셉트론, 심층 신경망, 순환 신경망 등 다양한 기법에 관해 설명합니다. 취급할 데이터의 종류에 따라 생각해야 할 과제도 다르므로 이에 맞춰 네트워크를 변화시키며 학습을 진행합니다. 이 책에서 배운 이론만 잘 알고 있으면 앞으로 어떤 딥러닝 기법이 나와도 금방 이해하고 능숙하게 사용할 수 있을 것입니다. 그리고 자신이 직접 새로운 모델을 고안해 낼 수도 있을 것입니다.

상세이미지

정석으로 배우는 딥러닝(위키북스 데이터 사이언스 시리즈 8) 도서 상세이미지

목차

▣ 01장: 수학 지식 준비
1.1 편미분
__1.1.1 도함수와 편도함수
__1.1.2 미분 계수와 편미분 계수
__1.1.3 편미분의 기본 공식
__1.1.4 합성함수의 편미분
__1.1.5 레벨 업 전미분
1.2 선형대수
__1.2.1 벡터
__1.2.2 행렬
1.3 정리

▣ 02장: 파이썬 준비
2.1 파이썬 2와 파이썬 3
2.2 아나콘다 배포판
2.3 파이썬 기초
__2.3.1 파이썬 프로그램 실행
__2.3.2 데이터형
__2.3.3 변수
__2.3.4 데이터 구조
__2.3.5 연산
__2.3.6 기본 구문
__2.3.7 함수
__2.3.8 클래스
__2.3.9 라이브러리
2.4 NumPy
__2.4.1 NumPy 배열
__2.4.2 NumPy로 벡터, 행렬 계산
__2.4.3 배열과 다차원 배열 생성
__2.4.4 슬라이스
__2.4.5 브로드캐스트
2.5 딥러닝을 위한 라이브러리
__2.5.1 TensorFlow
__2.5.2 케라스(Keras)
__2.5.3 씨아노(Theano)
2.6 정리

▣ 03장: 신경망
3.1 신경망이란?
__3.1.1 뇌와 신경망
__3.1.2 딥러닝과 신경망
3.2 신경망이라는 회로
__3.2.1 단순한 모델화
__3.2.2 논리회로
3.3 단순 퍼셉트론
__3.3.1 모델화
__3.3.2 구현
3.4 로지스틱 회귀
__3.4.1 계단함수와 시그모이드 함수
__3.4.2 모델화
__3.4.3 구현
__3.4.4 (레벨업) 시그모이드 함수와 확률밀도함수, 누적분포함수
__3.4.5 (레벨업) 경사하강법과 국소최적해
3.5 다중 클래스 로지스틱 회귀
__3.5.1 소프트맥스 함수
__3.5.2 모델화
__3.5.3 구현
3.6 다층 퍼셉트론
__3.6.1 비선형 분류
__3.6.2 모델화
__3.6.3 구현
3.7 모델 평가
__3.7.1 분류에서 예측으로
__3.3.2 예측을 평가
__3.7.3 간단한 실험
3.8 정리

▣ 04장: 심층 신경망
4.1 딥러닝 준비
4.2 학습시킬 때 발생하는 문제점
__4.2.1 경사 소실 문제
__4.2.2 오버피팅 문제
4.3 효율적인 학습을 위해
__4.3.1 활성화 함수
__4.3.2 드롭아웃
4.4 구현 설계
__4.4.1 기본 설계
__4.4.2 학습을 가시화한다
4.5 고급 기술
__4.5.1 데이터를 정규화하고 웨이트를 초기화한다
__4.5.2 학습률 설정
__4.5.3 얼리 스탑핑(조기 종료)
__4.5.4 배치 정규화
4.6 정리

▣ 05장: 순환 신경망
5.1 기본 사항
__5.1.1 시계열 데이터
__5.1.2 과거의 은닉층
__5.1.3 Backpropagation Through Time
__5.1.4 구현
5.2 LSTM
__5.2.1 LSTM 블록
__5.2.2 CEC?입력 게이트?출력 게이트
__5.2.3 망각 게이트
__5.2.4 핍홀 결합
__5.2.5 모델화
__5.2.6 구현
__5.2.7 장기 의존성 학습 평가 - Adding Problem
5.3 GRU
__5.3.1 모델화
__5.3.2 구현
5.4 정리

▣ 06장: 순환 신경망 응용
6.1 Bidirectional RNN
__6.1.1 미래의 은닉층
__6.1.2 전방향?후방향 전파
__6.1.3 MNIST를 사용한 예측
6.2 RNN Encoder-Decoder
__6.2.1 Sequence-to-Sequence 모델
__6.2.2 간단한 Q&A 문제
6.3 Attention
__6.3.1 시간의 웨이트
__6.3.2 LSTM에서의 Attention
6.4 Memory Networks
__6.4.1 기억의 외부화
__6.4.2 Q&A 문제에 적용
__6.4.3 구현
6.5 정리

▣ 부록
A.1 모델을 저장하고 읽어 들인다
__A.1.1 텐서플로에서의 처리
__A.1.2 케라스에서의 처리
A.2 텐서보드(TensorBoard)
A.3 tf.contrib.learn

출판사 서평

기초부터 응용까지, 이론에서 구현까지!

이 책은 딥러닝과 신경망에 관한 예비 지식 없이도 학습해 나아갈 수 있도록 기본적인 내용부터 이론과 구현에 관해 상세하게 설명합니다. 구현에는 파이썬의 딥러닝용 라이브러리인 텐서플로(1.0)와 케라스(2.0)를 사용합니다.

이 책은 단순 퍼셉트론부터 시작해서 다층 퍼셉트론, 심층 신경망, 순환 신경망 등 다양한 기법에 관해 설명합니다. 취급할 데이터의 종류에 따라 생각해야 할 과제도 다르므로 이에 맞춰 네트워크를 변화시키며 학습을 진행합니다. 이 책에서 배운 이론만 잘 알고 있으면... 더보기

Klover 리뷰 (0)

북로그 리뷰 (0) 쓰러가기

북로그 리뷰는 본인 인증 후 작성 가능합니다.
책이나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 내용은 비공개 처리 될 수 있습니다.
※ 북로그 리뷰 리워드 제공 2021. 4. 1 종료

문장수집 (0) 문장수집 쓰기 나의 독서기록 보기
※구매 후 문장수집 작성 시, 리워드를 제공합니다. 안내

스토리K

1건의 스토리K가 있습니다.

    교환/반품/품절안내

    ※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

    교환/반품/품절안내
    반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
    [1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

    ※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
        또는 고객센터 (1544-1900)
    반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
    상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
    반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    반품/교환 불가 사유
    • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
      (단지 확인을 위한 포장 훼손은 제외)
    • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
      예) 화장품, 식품, 가전제품(악세서리 포함) 등
    • 복제가 가능한 상품 등의 포장을 훼손한 경우
      예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
    • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
    • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
    • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
    • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
      해당되는 경우
    (1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①서양도서-판매정가의 12%, ②일본도서-판매정가의 7%를 적용)
    상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
    이메일과 문자로 안내드리겠습니다.
    소비자 피해보상
    환불지연에 따른 배상
    • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
      소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
    • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
      소비자 보호에 관한 법률에 따라 처리함

    이 책의 원서/번역서

    안내

    바로가기

    • 우측 확장형 배너 2
    • 우측 확장형 배너 2

    최근 본 상품