본문내용 바로가기
무료배송 이벤트 사은품 경품 소득공제

프로그래머를 위한 베이지안 with 파이썬 파이썬과 PyMC로 구현하며 익히는 베이지안 방법론

캐머런 데이비슨 필론 지음 | 곽승주 옮김 | 길벗 | 2017년 11월 30일 출간
| 5점 만점에 0점 리뷰 0개 리뷰쓰기
  • 정가 : 27,000원
    판매가 : 24,300 [10%↓ 2,700원 할인]
  • 통합포인트 :
    [기본적립] 1,350원 적립 [5% 적립] 안내 [추가적립] 5만원 이상 구매 시 2천원 추가적립 [회원혜택] 우수회원 3만원 이상 구매 시 2~4% 추가적립
  • 추가혜택 : 포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 배송일정 : 서울특별시 종로구 세종대로 기준 지역변경
    지금 주문하면 내일(14일,토) 도착 예정 배송일정 안내
  • 바로드림 : 인터넷으로 주문하고 매장에서 직접 수령 안내 바로드림 혜택
    휴일에는 바로드림 픽업으로 더 빨리 받아 보세요. 바로드림 혜택받고 이용하기

이 책의 이벤트 해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.

  • 2020 다이어리 사은품 선택
    2019.11.27 ~ 2019.12.31
  • 행사도서 포함 IT 분야 3만원 이상 구매시 개발자 텀블러티슈 ..
    2019.11.05 ~ 2019.12.31
  • 개발자로 입문하기: 일단 이것부터 읽어보자!
    2019.05.31 ~ 2020.12.31
  • 길벗 IT도서를 한눈에 살펴보세요!
    2017.11.23 ~ 2019.12.31
  • 웹개발 입문자를 위한 아주 약간의 가이드
    2017.07.11 ~ 2020.12.31
  • #리드잇 페이스북 페이지 팔로우 하시고, 신간소식 빠르게 받아보..
    2017.06.22 ~ 2025.07.31
  • 파이썬 도서 전체 목록입니다. 새로운 책을 발견해보세요!
    2016.08.11 ~ 2020.12.31
  • MANNING, O'REILLY, PACKT, WILE..
    2016.03.07 ~ 2020.12.31
  • 설문참여 시 매월 5명 추첨통해 선물을 드립니다.
    10. 14 ~ 12. 31
상품상세정보
ISBN 9791160503371(1160503370)
쪽수 280쪽
크기 184 * 236 * 19 mm /657g 판형알림
이 책의 원서/번역서 Bayesian Methods for Hackers/Davidson-pilon, Cameron

책소개

이 책이 속한 분야

베이지안 방법과 확률 프로그래밍, 이 모든 것을 파이썬으로!

수학 없이 파이썬 코드로 이해한다. 수식을 설명하지 않는다. 컴퓨터를 이용한 이해가 최우선이다. 베이지안에서 사용하는 MCMC 모델, 손실함수, A/B 테스팅 등을 파이썬 코드로 구현해보면서 내용을 이해하고 활용 방법을 익힌다. 결과적으로 베이지안 추론이 무엇이고, 다른 통계적 추론과 어떤 차이가 있는지 이해한다.

계산 문제 대신 실생활 문제를 풀어본다. 실생활 문제를 사용하여 베이지안 수학과 확률 프로그래밍을 연결시킨다. 문자 메시지 데이터에서 사용자 행동 추론하기, 학생들의 부정행위 빈도 추론하기, 캐글의 미국 인구조사 회신율 챌린지 도전하기 같은 예제를 베이지안 방법으로 풀어본다.

PyMC + 주피터노트북으로 데이터를 시각화해서 파악한다. PyMC라는 파이썬 라이브러리로 베이지안 통계 모델링과 확률적 기계학습을 구현한다. 파이썬 코드를 쉽게 입력, 수정, 삭제하고, 실행 결과와 그래프를 바로 볼 수 있도록 주피터노트북을 사용한다.

상세이미지

프로그래머를 위한 베이지안 with 파이썬 도서 상세이미지

저자소개

저자 : 캐머런 데이비슨 필론

저자 캐머런 데이비슨 필론(Cameron Davidson-Pilon)은 캐나다 온타리오 주 ?프에서 성장하였으며 워털루대학교와 모스크바독립대학에서 수학하였다. 유전자와 질병의 진화역학부터 금융상품 가격에 대한 확률적 모델링까지 여러 응용수학 분야를 거쳐 왔다. 현재는 온타리오 주 오타와에 살면서 온라인 상거래 선두 업체인 쇼피파이(Shopify)에서 일하고 있다.

역자 : 곽승주

역자 곽승주는 한양대학교 경제학 석사를 받았으며 은행과 자산운용사의 리스크, 컴플라이언스, 헤지펀드 부서에서 리스크 및 펀드성과 리포팅, 주식 및 선물운용 및 계량분석, ELS 평가 및 백테스팅, 백오피스 업무자동화 등을 위한 업무와 소프트웨어를 개발하였다. 현재는 두 명의 동료와 함께 딥러닝 기술을 이용한 증권분석 및 추천시스템, 금융회사의 ERP 및 업무자동화 서비스 개발에 참여하고 있다. 그의 개인적인 활동은 블로그(deeplearners.wordpress.com, timebird.egloos.com)에서 볼 수 있다.

목차

1장 베이지안 추론의 철학
__1.1 서론
____1.1.1 베이지안 심리 상태
____1.1.2 실제 베이지안 추론
____1.1.3 빈도주의자의 방법이 틀렸나?
____1.1.4 빅데이터에 대한 논의
__1.2 베이지안 프레임워크
____1.2.1 예제: 피해갈 수 없는 동전 던지기
____1.2.2 예제: 사서일까, 농부일까?
__1.3 확률분포
____1.3.1 이산적인 경우
____1.3.2 연속적인 경우
____1.3.3 그럼 λ란 무엇인가?
__1.4 컴퓨터를 사용하여 베이지안 추론하기
____1.4.1 예제: 문자 메시지 데이터에서 행동 추론하기
____1.4.2 우리의 첫 번째 망치를 소개한다: PyMC
____1.4.3 해석
____1.4.4 사후확률분포에서 얻은 표본에는 어떤 좋은 점이 있는가?
__1.5 결론
__1.6 부록
____1.6.1 두 λ가 정말 다른지 통계적으로 알 수 있나?
____1.6.2 변환점 두 개로 확장하기
__1.7 연습문제
____1.7.1 해답
__1.8 참고자료

2장 PyMC 더 알아보기
__2.1 서론
____2.1.1 부모와 자식 관계
____2.1.2 PyMC 변수
____2.1.3 모델에 관측 포함하기
____2.1.4 마지막으로
__2.2 모델링 방법
____2.2.1 같은 스토리, 다른 결말
____2.2.2 예제: 베이지안 A/B 테스트
____2.2.3 간단한 예제
____2.2.4 A와 B를 묶어 보기
____2.2.5 예제: 거짓말에 대한 알고리즘
____2.2.6 이항분포
____2.2.7 예제: 학생들의 부정행위
____2.2.8 PyMC 대안 모델
____2.2.9 더 많은 PyMC 기법들
____2.2.10 예제: 우주 왕복선 챌린저호 참사
____2.2.11 정규분포
____2.2.12 챌린저호 참사 당일에는 무슨 일이 일어났는가?
__2.3 우리의 모델이 적절한가?
____2.3.1 분리도표
__2.4 결론
__2.5 부록
__2.6 연습문제
____2.6.1 해답
__2.7 참고자료

3장 MCMC 블랙박스 열기
__3.1 베이지안 지형
____3.1.1 MCMC를 사용하여 지형 탐색하기
____3.1.2 MCMC 수행 알고리즘
____3.1.3 사후확률분포에 대한 다른 접근법
____3.1.4 예제: 혼합모델을 사용한 비지도 클러스터링
____3.1.5 사후확률분포의 표본을 섞지 마라
____3.1.6 MAP을 사용하여 수렴 개선하기
__3.2 수렴 판정하기
____3.2.1 자기상관
____3.2.2 솎아내기
____3.2.3 pymc.Matplot.plot()
__3.3 MCMC에 대한 유용한 팁
____3.3.1 지능적인 시작값
____3.3.2 사전분포
____3.3.3 통계적 계산에 대한 구전 정리
__3.4 결론
__3.5 참고자료

4장 아무도 알려주지 않는 위대한 이론
__4.1 서론
__4.2 큰 수의 법칙
____4.2.1 직관
____4.2.2 예제: 푸아송 확률변수의 수렴
____4.2.3 Var(Z)를 어떻게 계산할까?
____4.2.4 기댓값과 확률
____4.2.5 이 모든 것이 베이지안 통계와 무슨 상관이 있을까?
__4.3 작은 수의 혼란
____4.3.1 예제: 통합된 지리 데이터
____4.3.2 예제: 캐글의 미국 인구조사 우편물 회신율 챌린지
____4.3.3 예제: 레딧 코멘트 정렬하기/추려내기
____4.3.4 추리기
____4.3.5 그러나 이 방법은 실시간에서는 너무 느리다
____4.3.6 별등급 시스템 확장
__4.4 결론
__4.5 부록
____4.5.1 코멘트를 추리는 수식 유도
__4.6 연습문제
____4.6.1 해답
__4.7 참고자료

5장 오히려 큰 손해를 보시겠습니까?
__5.1 서론
__5.2 손실함수
____5.2.1 현실 세계에서의 손실함수
____5.2.2 예제: ‘The Price Is Right’ 쇼케이스 최적화
__5.3 베이지안 방법을 통한 기계학습
____5.3.1 예제: 금융예측
____5.3.2 예제: 캐글의 Observing Dark Worlds 콘테스트
____5.3.3 데이터
____5.3.4 사전확률
____5.3.5 훈련과 PyMC 구현
__5.4 결론
__5.5 참고자료

6장 우선순위 바로잡기
__6.1 서론
__6.2 주관적인 사전확률분포 vs. 객관적인 사전확률분포
____6.2.1 객관적인 사전확률분포
____6.2.2 주관적인 사전확률분포
____6.2.3 결정, 결정…
____6.2.4 경험적 베이즈
__6.3 알아두면 유용한 사전확률분포
____6.3.1 감마분포
____6.3.2 위샤트분포
____6.3.3 베타분포
__6.4 예제: 베이지안 MAB(Multi-Armed Bandits)
____6.4.1 응용
____6.4.2 솔루션 제안
____6.4.3 적합의 척도
____6.4.4 알고리즘 확장하기
__6.5 해당 분야 전문가로부터 사전확률분포 유도하기
____6.5.1 트라이얼 룰렛법
____6.5.2 예제: 주식수익률
____6.5.3 위샤트분포를 위한 팁
__6.6 켤레 사전확률분포
__6.7 제프리 사전확률분포
__6.8 N이 증가할 때 사전확률분포의 효과
__6.9 결론
__6.10 부록
____6.10.1 벌점화 회귀부모형에 대한 베이지안의 관점
____6.10.2 퇴화 사전확률분포 고르기
__6.11 참고자료

7장 베이지안 A/B 테스트
__7.1 서론
__7.2 전환율 테스트 개요
__7.3 선형손실함수 추가하기
____7.3.1 기대수익분석
____7.3.2 A/B 실험 확장하기
__7.4 전환율을 넘어서: t-검정
____7.4.1 t-검정 설정
__7.5 증분 추정하기
____7.5.1 점추정량 만들기
__7.6 결론
__7.7 참고자료

부록 A
__A.1 파이썬, PyMC
____A.1.1 아나콘다 설치하기
____A.1.2 실습 전 라이브러리 설치하기
__A.2 주피터 노트북
____A.2.1 예제 소스 다운로드
____A.2.2 주피터 노트북 실행
__A.3 Reddit 실습하기
____A.3.1 praw 설치하기
____A.3.2 Reddit 가입하기

용어집
찾아보기

추천사

폴 딕스(에디슨웨슬리데이터분석 편집자)

베이지안 방법은 현대 데이터 과학자가 사용하는 여러 가지 도구 중 하나다. 베이지안 방법은 예측, 분류, 스팸 검출, 순위 매기기, 추론 그리고 다른 많은 작업에서 문제를 해결하는 데 사용된다. 하지만 베이지안 통계와 추론에... 더보기

출판사 서평

[이 책의 내용]
1장 베이지안 방식으로 생각하기
2장 PyMC로 베이지안 모델링 시작하기
3장 MCMC로 알고리즘 수렴 여부 간파하기
4장 베이지안 추론에서 표본 크기 이해하기
5장 손실함수로 추론이 틀릴 확률 계산하기
6장 적절한 사전확률분포 고르기
7장 A/B 테스트에서 베이지안 추론 사용하기

[저자 서문]
베이지안 방법은 자연스러운 추론 방법이지만, 내용이 따분하고 수학적인 분석으로 가득 차 있어 독자와 거리가 멀다. 전형적인 베이지안 추론 책에서는 확률 이론이 2~3개 장 분량으로 나온 다음 베이지안 추... 더보기

북로그 리뷰 (0) 쓰러가기

도서 구매 후 리뷰를 작성하시면 통합포인트를 드립니다.
결제 90일 이내 작성 시 300원 / 발송 후 5일 이내 작성시 400원 / 이 상품의 첫 리뷰 작성 시 500원
(포인트는 작성 후 다음 날 적립되며, 도서 발송 전 작성 시에는 발송 후 익일에 적립됩니다.
외서/eBook/음반/DVD/GIFT 및 잡지 상품 제외)
안내
  • 해당도서의 리뷰가 없습니다.

Klover 평점/리뷰 (0)

문장수집 (0) 문장수집 쓰기 나의 독서기록 보기
※구매도서의 문장수집을 기록하면 통합포인트 적립 안내

교환/반품/품절안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품/품절안내
반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
[1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
    또는 고객센터 (1544-1900)
반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유
  • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
  • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
  • 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
  • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
  • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
    해당되는 경우
(1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①양서-판매정가의 12%, ②일서-판매정가의 7%를 적용)
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
이메일과 문자로 안내드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
  • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
    소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
  • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
    소비자 보호에 관한 법률에 따라 처리함

이 책의 원서번역서

안내

이 분야의 베스트

  • 윤인성
    16,200원
  • 길벗알앤디
    27,900원
  • 이남호
    23,310원
  • 길벗R&D
    32,400원
  • 선양미
    18,900원
더보기+

이 분야의 신간

  • 길벗알앤디
    27,900원
  • 다카라지마사
    9,900원
  • 테런스 J. 세즈노스키
    22,500원
  • 이동욱
    19,800원
  • 길벗R&D
    15,300원
더보기+

바로가기

  • 우측 확장형 배너 2
  • 우측 확장형 배너 2

최근 본 상품