본문내용 바로가기
MD의선택 무료배송 이벤트 사은품 소득공제

핸즈온 머신러닝 사이킷런과 텐서플로를 활용한 머신러닝, 딥러닝 실무

오렐리앙 제롱 지음 | 박해선 옮김 | 한빛미디어 | 2018년 04월 27일 출간

Klover 평점18명

  • 정가 : 33,000원
    판매가 : 29,700 [10%↓ 3,300원 할인]
  • 통합포인트 :
    [기본적립] 1,650원 적립 [5% 적립] 안내 [추가적립] 5만원 이상 구매 시 2천원 추가적립 [회원혜택] 우수회원 5만원 이상 구매 시 2~3% 추가적립
  • 추가혜택 : 카드/포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 배송일정 : 서울특별시 종로구 세종대로 기준 지역변경
    당일배송 지금 주문하면 오늘(20일,목) 도착 예정 배송일정 안내
  • 바로드림 : 인터넷으로 주문하고 매장에서 직접 수령 안내
장바구니 담기 바로구매

책 그리고 꽃 서비스
책 그리고 꽃 | 책과 꽃을 함께 선물하세요 자세히보기

닫기

바로드림 주문 선물하기 보관함 담기

이 책의 이벤트 해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.

  • 행사도서 포함 3만원 이상 구매 시, 개발자굿즈(양장 데스크노트..
    2018.09.18 ~ 2018.10.18
  • 개발자의 오랜친구, 한빛미디어의 책을 편리하게 모아보세요
    2017.11.22 ~ 2019.12.31
  • #리드잇 페이스북 페이지 팔로우 하시고, 신간소식 빠르게 받아보..
    2017.06.22 ~ 2025.07.31
  • MANNING, O'REILLY, PACKT, WILE..
    2016.03.07 ~ 2020.12.31
상품상세정보
ISBN 9791162240731(1162240733)
쪽수 672쪽
크기 182 * 235 * 27 mm /1197g 판형알림
이 책의 원서/번역서 Hands-On Machine Learning with Scikit-Learn and TensorFlow/Geron, Aurelien

책소개

이 책이 속한 분야

이 책의 주제어

인공지능 분야에 종사한다면 반드시 읽어야 하는
머신러닝 전문가로 이끄는 최고의 실전 지침서!

최근의 눈부신 혁신들로 딥러닝은 머신러닝 분야 전체를 뒤흔들고 있습니다. 이제 이 기술을 거의 모르는 프로그래머도 데이터로부터 학습하는 프로그램을 어렵지 않게 작성할 수 있습니다. 이 책은 그 지름길입니다. 구체적인 예, 핵심 이론, 검증된 두 프레임워크(사이킷런, 텐서플로)를 이용해 지능형 시스템을 구축하는 개념과 방법을 확실하게 알려줍니다. 또한, 각 장의 연습문제는 본문에서 익힌 기법을 실전에 응용하는 데 큰 도움이 될 것입니다.

저자소개

저자 : 오렐리앙 제롱

저자가 속한 분야

저자 오렐리앙 제롱(Aur?lien G?ron)
머신러닝 컨설턴트. 2013년에서 2016년까지 구글에서 유튜브 동영상 분류팀을 이끌었습니다. 2002년에서 2012년까지 프랑스의 모바일 ISP 선두 주자인 Wifirst를 설립하고 CTO로 일했습니다. 2001년에는 Polyconseil을 설립하고 CTO로 일했습니다. 이 회사는 지금 전기차 공유 서비스인 Autolib’을 운영하고 있습니다.
그 전에는 재무(JP 모건과 소시에테 제네랄), 방위(캐나다 DOD), 의료(수혈) 등 다양한 분야에서 엔지니어로 일했습니다. C++, WiFi, 인터넷 구조에 대한 몇 권의 기술 서적을 썼으며 한 프랑스 공과대학교에서 컴퓨터 과학을 가르쳤습니다.
재미있는 몇 가지 사실: 세 아이에게 손가락으로 이진수 세는 법을 가르쳤습니다(1023까지). 소프트웨어 공학 분야에 들어오기 전에는 미생물학과 진화 유전학을 공부했습니다. 두 번째 점프에서 낙하산이 펼쳐지지 않았습니다.

역자 : 박해선

옮긴이 박해선
기계공학을 전공했지만 졸업 후엔 대부분 코드를 읽고 쓰는 일을 했습니다. 텐서 블로그(tensorflow.blog)와 홍대 머신러닝 스터디(meetup.com/Hongdae-Machine-Learning-Study/)를 운영하면서 소프트웨어와 과학의 경계를 흥미롭게 탐험하고 있습니다.
『파이썬 라이브러리를 활용한 머신러닝』(한빛미디어, 2017)과 『텐서플로 첫걸음』(한빛미디어, 2016)을 우리말로 옮겼습니다.

목차

지은이ㆍ옮긴이 소개
추천의 글
옮긴이의 말
이 책에 대하여
감사의 글

Part1 머신러닝
CHAPTER1 한눈에 보는 머신러닝
1.1 머신러닝이란?
1.2 왜 머신러닝을 사용하는가?
1.3 머신러닝 시스템의 종류
1.4 머신러닝의 주요 도전 과제
1.5 테스트와 검증
1.6 연습문제
CHAPTER2 머신러닝 프로젝트 처음부터 끝까지
2.1 실제 데이터로 작업하기
2.2 큰 그림 보기
2.3 데이터 가져오기
2.4 데이터 이해를 위한 탐색과 시각화
2.5 머신러닝 알고리즘을 위한 데이터 준비
2.6 모델 선택과 훈련
2.7 모델 세부 튜닝
2.8 론칭, 모니터링, 그리고 시스템 유지 보수
2.9 직접 해보세요!
2.10 연습문제
CHAPTER3 분류
3.1 MNIST
3.2 이진 분류기 훈련
3.3 성능 측정
3.4 다중 분류
3.5 에러 분석
3.6 다중 레이블 분류
3.7 다중 출력 분류
3.8 연습문제
CHAPTER4 모델 훈련
4.1 선형 회귀
4.2 경사 하강법
4.3 다항 회귀
4.4 학습 곡선
4.5 규제가 있는 선형 모델
4.6 로지스틱 회귀
4.7 연습문제
CHAPTER5 서포트 벡터 머신
5.1 선형 SVM 분류
5.2 비선형 SVM 분류
5.3 SVM 회귀
5.4 SVM 이론
5.5 연습문제
CHAPTER6 결정 트리
6.1 결정 트리 학습과 시각화
6.2 예측하기
6.3 클래스 확률 추정
6.4 CART 훈련 알고리즘
6.5 계산 복잡도
6.6 지니 불순도 또는 엔트로피?
6.7 규제 매개변수
6.8 회귀
6.9 불안정성
6.10 연습문제
CHAPTER7 앙상블 학습과 랜덤 포레스트
7.1 투표 기반 분류기
7.2 배깅과 페이스팅
7.3 랜덤 패치와 랜덤 서브스페이스
7.4 랜덤 포레스트
7.5 부스팅
7.6 스태킹
7.7 연습문제
CHAPTER8 차원 축소
8.1 차원의 저주
8.2 차원 축소를 위한 접근 방법
8.3 PCA
8.4 커널 PCA
8.5 LLE
8.6 다른 차원 축소 기법
8.7 연습문제

Part2 신경망과 딥러닝
CHAPTER9 텐서플로 시작하기
9.1 설치
9.2 첫 번째 계산 그래프를 만들어 세션에서 실행하기
9.3 계산 그래프 관리
9.4 노드 값의 생애주기
9.5 텐서플로를 이용한 선형 회귀
9.6 경사 하강법 구현
9.7 훈련 알고리즘에 데이터 주입
9.8 모델 저장과 복원
9.9 텐서보드로 그래프와 학습 곡선 시각화하기
9.10 이름 범위
9.11 모듈화
9.12 변수 공유
9.13 연습문제
CHAPTER10 인공 신경망 소개
10.1 생물학적 뉴런에서 인공 뉴런까지
10.2 텐서플로의 고수준 API로 다층 퍼셉트론 훈련하기
10.3 텐서플로의 저수준 API로 심층 신경망 훈련하기
10.4 신경망 하이퍼파라미터 튜닝하기
10.5 연습문제
CHAPTER11 심층 신경망 훈련
11.1 그래디언트 소실과 폭주 문제
11.2 미리 훈련된 층 재사용하기
11.3 고속 옵티마이저
11.4 과대적합을 피하기 위한 규제 방법
11.5 실용적 가이드라인
11.6 연습문제
CHAPTER12 다중 머신과 장치를 위한 분산 텐서플로
12.1 단일 머신의 다중 장치
12.2 다중 머신의 다중 장치
12.3 텐서플로 클러스터에서 신경망 병렬화하기
12.4 연습문제
CHAPTER13 합성곱 신경망
13.1 시각 피질의 구조
13.2 합성곱층
13.3 풀링층
13.4 CNN 구조
13.5 연습문제
CHAPTER14 순환 신경망
14.1 순환 뉴런
14.2 텐서플로로 기본 RNN 구성하기
14.3 RNN 훈련하기
14.4 심층 RNN
14.5 LSTM 셀
14.6 GRU 셀
14.7 자연어 처리
14.8 연습문제
CHAPTER15 오토인코더
15.1 효율적인 데이터 표현
15.2 과소완전 선형 오토인코더로 PCA 수행하기
15.3 적층 오토인코더
15.4 적층 오토인코더를 사용한 비지도 사전훈련
15.5 잡음제거 오토인코더
15.6 희소 오토인코더
15.7 변이형 오토인코더
15.8 다른 오토인코더들
15.9 연습문제
CHAPTER16 강화 학습
16.1 보상을 최적화하기 위한 학습
16.2 정책 탐색
16.3 OpenAI 짐(Gym)
16.4 신경망 정책
16.5 행동 평가: 신용 할당 문제
16.6 정책 그래디언트
16.7 마르코프 결정 과정
16.8 시간차 학습과 Q-러닝
16.9 DQN 알고리즘으로 미스 팩맨 플레이 학습하기
16.10 연습문제

감사합니다!

Part3 부록
부록 A. 연습문제 정답
부록 B. 머신러닝 프로젝트 체크리스트
부록 C. SVM 쌍대 문제
부록 D. 자동 미분
부록 E. 유명한 다른 인공 신경망 구조

추천사

권순선

이 책이 한국에도 출간된다는 소식을 듣고 매우 매우 기대하고 있던 차에 마침 역자인 박해선 님과 인연이 닿아서 추천사까지 쓰게 된 점을 무한한 영광으로 생각합니다. 기하급수적으로 다양하고 많은 데이터가 쌓이고 기술의 발전으로... 더보기

이상훈(삼성생명 DA Lab)

몇 년 전부터 머신러닝과 딥러닝이 학계는 물론 업계에서도 많은 화제가 되면서 각종 강의와 책이 쏟아져 나왔습니다. 그런데 책 대부분은 비전공자를 위한 입문서이거나 특정 패키지(혹은 오픈소스)를 설명하는 데 치중하여 실전에서 ... 더보기

이준우(MindsLab Brain팀)

인공지능은 어느덧 우리 삶에 들어와 매우 중요한 위치를 차지하였고, 심지어 이제는 어색하지도 않습니다. 알파고가 세상에 선보인 지 올해로 2년, 우리나라도 유수의 스타트업과 대기업이 AI에 투자하는 등, 1분 1초가 다르게 ... 더보기

출판사 서평

아마존 인공지능 분야 부동의 1위 도서
이 책의 원서는 출간 직후부터 미국 아마존 인공지능 분야에서 줄곧 1위 자리를 지키고 있습니다. 가장 많은 명저가 경쟁하는 시장에서 이처럼 확고부동한 호응을 얻은 데는 그만한 이유가 있습니다. 이론과 활용을 적절히 섞으면서도 실무에서 확실히 통하도록 구성했고, 나아가 실무자들의 실력을 한층 끌어올려줄 깊이를 담았기 때문이죠.

또한, 박해선 역자는 번역서에 많은 노력과 애정을 쏟아붓는 분으로 손꼽힙니다. 모든 것을 직접 해보며 독자가 궁금해할 만한 내용을 꼼꼼히 챙겨, 아마도 책을 읽다... 더보기

북로그 리뷰 (2) 전체보기 쓰러가기

도서 구매 후 리뷰를 작성하시면 통합포인트를 드립니다.
결제 90일 이내 작성 시 300원 / 발송 후 5일 이내 작성시 400원 / 이 상품의 첫 리뷰 작성 시 500원
(포인트는 작성 후 다음 날 적립되며, 도서 발송 전 작성 시에는 발송 후 익일에 적립됩니다.
외서/eBook/음반/DVD/GIFT 및 잡지 상품 제외)
안내
  • 2018년 4월에 나온 따끈따끈한 신간입니다. 책 뒷면의 "아마존 인공지능 분야 부동의 1위 도서"라는 문구가 눈길을 사로잡습니다. 이 책은 머신러닝에 대해 알아야 할 것들을 거의 다 포함하고 있습니다. "핸즈온"이라는 제목처럼 이 책만 마스터하면 머신러닝의 실무를 바로 시작할 수 있을 것만 같습니다.   책의 실습 예제들은 파이썬으로 되어 있고, pyplot, numpy, pandas, sklearn라이브러리를 사용합니다. 이 책의 1장에서는 머신러닝이란 무엇이고 어떤 종류가 있는지 개요를 다루고,  2장에서... 더보기
  • 최고의 ML관련 서적 bk**ys | 2018-04-28 | 추천: 0 | 5점 만점에 5점 구매
    기존 머신러닝에서 Deep learning까지 방대한 내용을 cover하고 있습니다. 그러나 그 내용 자체가 매우 방대한데 비해서  깔끔하게 핵심 및 필수적인 내용을 정확하게 담고 있습니다! 만일 그렇지 않으면 상상하기 어렵게 두꺼운 책이 되었을 것입니다. 게다가 적절한 수식을 첨가하여 그 이해를 잘 도왔습니다. 추가적인 학습을 위한 논문link를 잘 따라가면 더 심층학습을 할수 있습니다. Deep learning부분도 핵심적인 이해를 할수 있도록 잘 마련되었습니다. 친절하게도 부록부분에 연습문제 해답은 물론이... 더보기

Klover 평점/리뷰 (0)

스토리K 2건의 스토리K가 있습니다.

    교환/반품/품절안내

    ※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

    교환/반품/품절안내
    반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
    [1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

    ※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
        또는 고객센터 (1544-1900)
    반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
    상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
    반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    반품/교환 불가 사유
    • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
      (단지 확인을 위한 포장 훼손은 제외)
    • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
      예) 화장품, 식품, 가전제품(악세서리 포함) 등
    • 복제가 가능한 상품 등의 포장을 훼손한 경우
      예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
    • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
    • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
    • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
    • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
      해당되는 경우
    (1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①양서-판매정가의 12%, ②일서-판매정가의 7%를 적용)
    상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
    이메일과 문자로 안내드리겠습니다.
    소비자 피해보상
    환불지연에 따른 배상
    • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
      소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
    • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
      소비자 보호에 관한 법률에 따라 처리함

    이 책의 원서번역서

    안내

    이 분야의 베스트

    더보기+

    이 분야의 신간

    더보기+

    바로가기

    • 우측 확장형 배너 2
    • 우측 확장형 배너 2

    최근 본 상품