본문내용 바로가기
MD의선택 무료배송 사은품 소득공제

실체가 손에 잡히는 딥러닝, 기초부터 실전 프로그래밍 기초 수학과 파이썬 코드를 따라만 하면 신기하게 이해되는 | 신경망, 역전파, CNN 구현

아즈마 유키나가 지음 | 최재원 옮김 | 책만 | 2019년 06월 18일 출간
| 5점 만점에 0점 리뷰 0개 리뷰쓰기

이 책의 다른 상품 정보

  • 정가 : 26,000원
    판매가 : 23,400 [10%↓ 2,600원 할인]
  • 통합포인트 :
    [기본적립] 1,300원 적립 [5% 적립] 안내 [추가적립] 5만원 이상 구매 시 2천원 추가적립 [회원혜택] 우수회원 3만원 이상 구매 시 2~4% 추가적립
  • 추가혜택 : 포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 배송일정 : 서울특별시 종로구 세종대로 기준 지역변경
    10월 21일 출고 예정 배송일정 안내
  • 바로드림 : 인터넷으로 주문하고 매장에서 직접 수령 안내

이 책의 이벤트 해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.

  • Klover 리뷰달고 응모 버튼만 누르면, 추첨을 통해 책 선물..
    2019.10.18 ~ 2019.11.30
상품상세정보
ISBN 9791189909024(1189909022)
쪽수 364쪽
크기 179 * 235 * 24 mm /665g 판형알림
이 책의 원서/번역서 はじめてのディ-プラ-ニング PYTHONで學ぶニュ-ラルネットワ-クとバックプロパゲ-ション/我妻幸長

책소개

이 책이 속한 분야

이 책의 주제어

딥러닝의 기초 지식과 수학부터
파이썬을 활용한 실전 프로그래밍 구현까지,
한 권으로 모든 것을 끝내는
딥러닝 입문자를 위한 최고의 책!

지금까지 나왔던 다른 어떤 책들과는 달리 딥러닝을 수식과 코드로서 매우 이해하기 쉽게 설명한다. 또한, 간결하고 이해하기 쉬운 예제 코드들이 하나 하나 모여 책의 마지막에 이르러 최종적으로 실전에서도 활용할 수 있는 완결된 딥러닝 코드를 완성함으로써, 독자가 성취감을 느끼며 끝까지 포기하지 않고 완독할 수 있다는 점은 이 책의 최대 강점이다. 이 책에서는 파이썬과 기초 수학부터 시작해 역전파(Backpropagation)와 컨볼루션 신경망(CNN)까지, 딥러닝의 필수 요소를 빠짐없이 자세하게 설명한다. 독자가 파이썬 프로그래밍을 직접 코딩하면서 차근차근 순서대로 공부해 나가다 보면 딥러닝의 기초를 완벽하게 습득할 수 있다.

상세이미지

실체가 손에 잡히는 딥러닝, 기초부터 실전 프로그래밍 도서 상세이미지

저자소개

저자 : 아즈마 유키나가

‘인간과 AI의 공존’을 미션으로 하는 주식회사 SAI-Lab의 대표이사로, AI 관련 교육과 연구 개발에 종사하고 있다. 토후쿠대학 대학원 이학연구과 수료 후 이학박사(물리학)를 취득했다. 인공지능(AI), 복잡계, 뇌과학, 특이점(singularity) 등에 관심이 많으며 프로그래밍/AI 강사로서 지금까지 오프라인에서 1000명 이상, 온라인에서는 2만 명에 가까운 인원을 지도했다. 세계 최대 교육 동영상 플랫폼인 유데미(Udemy)에서 ‘처음 시작하는 파이썬’, ‘실전 데이터과학과 머신러닝’, ‘모두의 딥러닝’, ‘모두의 AI 강좌’ 등을 강의하고 있다. 엔지니어로도 일하면서 VR, 게임, SNS 등 분야를 불문한 다양한 애플리케이션을 개발했다.

역자 : 최재원

일본 게이오 대학원을 졸업하고 아주대 대학원에서 학습분석(Learning Analytics)으로 박사 학위를 취득했다. 대학 졸업 후 7년간 디지털 엔터테인먼트 업계에서 3D 영상, 게임, VR 프로듀서로 종사했고 대학원 진학 후 데이터 사이언스를 연구했다. 대학에서 통계와 데이터 사이언스 과목을 강의했으며 현재는 아주대학교 교수학습개발센터/평가인증센터에서 교육?학습 데이터 분석 업무를 담당하고 있다. XGBoost, 딥러닝, 문항반응이론(IRT), 지식공간(Knowledge Spaces) 등의 알고리즘을 이용한 학습부진 위험학생 조기 예측, 적응형 학습(adaptive learning) 등을 연구 중이다.

번역서로 『디지털 게임 교과서』(2012), 『유니티 입문』(2012), 『데이터 시각화, 인지과학을 만나다』(이상 에이콘출판, 2015), 『대학혁신을 위한 빅데이터와 학습분석』(시그마프레스, 2019)이 있으며, 전자책으로 출간된 『VR, 가까운 미래』(리디북스, 2016)를 집필했다.

작가의 말

한국에 계신 독자 여러분께,
저의 책 『실체가 손에 잡히는 딥러닝, 기초부터 실전 프로그래밍』에 관심을 가져주셔서 감사합니다. 이 책은 지금까지 나왔던 다른 어떤 책과는 달리 딥러닝을 매우 이해하기 쉽게 설명하는 책이라 자부합니다. 일본에서는 2018년 8월에 출간된 이후 지금도 많은 독자분이 읽고 있습니다.

딥러닝으로 대표되는 인공지능 기술은 전 세계인의 관심을 끌고 있으며 여러 기업과 공공기관에서 다방면에 걸쳐 활용 방법을 모색하고 있습니다. 그러나 대다수 사람들은 여전히 딥러닝이 배우기 어려운 분야라고 생각합니다. 이러한 장벽을 허물기 위해 이 책에서는 프로그래밍 언어 파이썬과 기초 수학부터 시작해 컨볼루션 신경망까지, 딥러닝에 필수적인 요소를 빠짐없이 자세하게 설명했습니다. 차근차근 순서대로 공부해 나가다 보면 딥러닝의 기초를 확실하게 습득할 수 있도록 구성했습니다.

오늘날 인공지능은 배울 만한 가치가 가장 큰 기술 중 하나이며, 기술적인 측면뿐만 아니라 미래에 대한 상상력을 기르기 위한 교양으로서도 의미가 큽니다. 한국에 계신 독자분들이 이 책을 통해 인공지능에 대한 자신만의 생각을 기를 수 있다면 저자로서 매우 기쁘겠습니다. 그럼 모두 저와 함께 딥러닝의 세계를 탐험해 봅시다!

목차

[1장] 딥러닝이란
1.1 지능이란 무엇인가
1.2 인공지능(AI)
1.3 머신러닝
1.4 신경망
1.5 딥러닝 개요
1.6 인공지능과 딥러닝의 역사
__1.6.1 제1차 인공지능 전성기: 1950년대~1960년대
__1.6.2 제2차 인공지능 전성기: 1980년대~1990년대 후반
__1.6.3 제3차 인공지능 전성기: 2000년대 이후

[2장] 파이썬 개요
2.1 파이썬을 사용하는 이유
2.2 아나콘다와 주피터 노트북 활용
__2.2.1 아나콘다 다운로드
__2.2.2 아나콘다 설치
__2.2.3 주피터 노트북 실행
__2.2.4 주피터 노트북 사용
__2.2.5 노트북 종료
2.3 파이썬 문법
__2.3.1 변수와 변수형
__2.3.2 연산자
__2.3.3 리스트
__2.3.4 튜플
__2.3.5 딕셔너리
__2.3.6 if문
__2.3.7 for문
__2.3.8 while문
__2.3.9 내포
__2.3.10 함수
__2.3.11 변수의 범위
__2.3.12 클래스
2.4 넘파이
__2.4.1 넘파이 임포트
__2.4.2 넘파이 배열
__2.4.3 배열을 생성하는 다양한 함수
__2.4.4 reshape를 이용한 형태 변환
__2.4.5 배열 연산
__2.4.6 브로드캐스트
__2.4.7 원솟값에 접근
__2.4.8 슬라이싱
__2.4.9 축과 transpose 메소드
__2.4.10 넘파이의 함수
2.5 맷플롯립
__2.5.1 모듈 임포트
__2.5.2 그래프 생성
__2.5.3 그래프 디자인
__2.5.4 산포도 표시
__2.5.5 이미지 표시

[3장] 딥러닝을 위한 수학
3.1 수학 기호
__3.1.1 시그마(Σ)로 총합계 표시
__3.1.2 자연상수 e
__3.1.3 자연로그 log
3.2 선형대수
__3.2.1 스칼라
__3.2.2 벡터
__3.2.3 행렬
__3.2.4 텐서
__3.2.5 스칼라와 행렬의 곱셈
__3.2.6 각 원소 간의 곱셈
__3.2.7 행렬 곱
__3.2.8 행렬 전치
3.3 미분
__3.3.1 상미분
__3.3.2 미분법의 기본 공식
__3.3.3 연쇄법칙
__3.3.4 편미분
__3.3.5 전미분
__3.3.6 다변수의 연쇄법칙
3.4 정규분포

[4장] 신경망
4.1 신경세포 네트워크
4.2 신경세포의 모델화
4.3 뉴런의 네트워크화
4.4 회귀와 분류
__4.4.1 회귀
__4.4.2 분류
4.5 활성화 함수
__4.5.1 계단 함수
__4.5.2 시그모이드 함수
__4.5.3 tanh
__4.5.4 ReLU
__4.5.5 Leaky ReLU
__4.5.6 항등 함수
__4.5.7 소프트맥스 함수
4.6 신경망 구현
__4.6.1 단일 뉴런 구현
__4.6.2 가중치와 편향의 영향
__4.6.3 신경망 구현
__4.6.4 각 층의 구현
__4.6.5 신경망(회귀)
__4.6.6 신경망의 표현력
__4.6.7 신경망(분류)

[5장] 역전파
5.1 학습 규칙
__5.1.1 헵의 규칙
__5.1.2 델타 규칙
5.2 역전파란?
5.3 훈련 데이터와 테스트 데이터
5.4 손실 함수
__5.4.1 오차제곱합
__5.4.2 교차 엔트로피 오차
5.5 경사 하강법
__5.5.1 경사 하강법 개요
__5.5.2 기울기 구하는 방법
__5.5.3 출력층 기울기
__5.5.4 출력층에서 입력값 기울기
__5.5.5 은닉층 기울기
__5.5.6 기울기를 구하는 식 정리
__5.5.7 회귀 문제에서 기울기 구하는 방법
__5.5.8 분류 문제에서 기울기 구하는 방법
5.6 최적화 알고리즘
__5.6.1 최적화 알고리즘 개요
__5.6.2 확률적 경사 하강법
__5.6.3 모멘텀
__5.6.4 아다그라드
__5.6.5 RMSProp
__5.6.6 아담
5.7 배치 사이즈
__5.7.1 에포크와 배치
__5.7.2 배치 학습
__5.7.3 온라인 학습
__5.7.4 미니 배치 학습
5.8 행렬 연산
__5.8.1 행렬의 형식
__5.8.2 행렬을 이용한 순전파
__5.8.3 행렬을 이용한 역전파
5.9 회귀 문제에서의 역전파 구현
__5.9.1 회귀 예(sin 함수의 학습)
__5.9.2 출력층 구현
__5.9.3 은닉층 구현
__5.9.4 역전파 구현
__5.9.5 역전파 구현 전체 코드(회귀)
__5.9.6 실행 결과
5.10 분류 문제에서의 역전파 구현
__5.10.1 분류 사례(소속 영역 학습)
__5.10.2 각 층의 구현
__5.10.3 역전파 구현 전체 코드(분류)
__5.10.4 실행 결과

[6장] 딥러닝 구현
6.1 다층화에 따른 문제
__6.1.1 국소 최적해 함정
__6.1.2 과적합
__6.1.3 기울기 소실
__6.1.4 장기간의 학습 시간 문제
6.2 문제 해결 방안
__6.2.1 하이퍼 파라미터 최적화
__6.2.2 규제화
__6.2.3 가중치와 편향 초깃값
__6.2.4 조기 종료
__6.2.5 데이터 확장
__6.2.6 데이터 전처리
__6.2.7 드롭아웃
6.3 붓꽃 품종 분류
__6.3.1 붓꽃 데이터 세트
__6.3.2 훈련 데이터와 테스트 데이터
__6.3.3 신경망 구성
__6.3.4 학습에 관련된 각 설정
6.4 딥러닝 구현
__6.4.1 데이터 입력과 전처리
__6.4.2 각 층의 구현
__6.4.3 신경망 구축
__6.4.4 미니배치법 구현
__6.4.5 정답률 측정
__6.4.6 붓꽃 데이터 품종 분류를 위한 전체 코드
__6.4.7 실행 결과
__6.4.8 과적합 방지를 위한 대책
__6.4.9 아다그라드 구현
__6.4.10 드롭아웃 구현
__6.4.11 과적합 방지 대책의 결과
__6.4.12 품종 분류

[7장] 컨볼루션 신경망(CNN)
7.1 컨볼루션 신경망(CNN)의 개요
__7.1.1 시각 처리 체계
__7.1.2 CNN 구조
__7.1.3 컨볼루션 층
__7.1.4 풀링층
__7.1.5 전결합층
__7.1.6 패딩
__7.1.7 스트라이드
__7.1.8 CNN 학습
__7.1.9 변수 정리
7.2 im2col과 col2im
__7.2.1 im2col과 col2im의 개요
__7.2.2 im2col 알고리즘
__7.2.3 간단한 im2col 구현
__7.2.4 배치와 채널을 고려한 실전 im2col 코드
__7.2.5 col2im 알고리즘
__7.2.6 col2im 구현
7.3 컨볼루션층 구현
__7.3.1 구현 개요
__7.3.2 순전파
__7.3.3 역전파
7.4 풀링층 구현
__7.4.1 구현 과정 개요
__7.4.2 순전파
__7.4.3 역전파
7.5 전결합층 구현
7.6 컨볼루션 신경망 구현
__7.6.1 사용 데이터 세트
__7.6.2 구축할 신경망
__7.6.3 CNN 코드
__7.6.4 실행 결과
__7.6.5 컨볼루션층의 시각화
__7.6.6 컨볼루션층 효과
7.7 더 깊은 신경망
__7.7.1 신경망 구축
__7.2.2 실행 결과

[8장] 그 밖의 딥러닝 기술
8.1 순환 신경망(RNN)
__8.1.1 RNN의 개요
__8.1.2 LSTM
__8.1.3 GRU
8.2 자연어 처리
__8 2.1 형태소 분석
__8.2.2 단어 임베딩
8.3 생성 모델
__8.3.1 생성적 적대 신경망(GAN)
__8.3.2 VAE
8.4 강화학습
__8.4.1 강화학습 개요
__8.4.2 심층 강화학습
8.5 GPU 활용
__8.5.1 GPU란
__8.5.2 딥러닝에서 GPU 활용
8.6 딥러닝 프레임워크
8.7 딥러닝의 미래

출판사 서평

[이 책의 구성]

1장 딥러닝이란
머신러닝과 인공지능, 딥러닝과의 관계에 대해 소개하며 그동안 인공지능이 걸어온 길을 간략하게 설명합니다. 저자가 뇌과학에 상당히 관심이 깊어 딥러닝을 뇌과학의 관점에서 바라보며 딥러닝과 뇌의 유사성에 대한 다양하고 흥미로운 이야기를 풀어 놓습니다.

2장 파이썬 개요
파이썬 문법과 주피터 노트북에 대한 핵심만 소개합니다. 여기서 핵심이라는 의미는 책 전체에 걸쳐 구현되는 딥러닝 코드에 필요한 사항에만 집중한다는 의미입니다. 따라서 당연히 파이썬 전체를 소개하는 책에 비해서는 다루는 범... 더보기

북로그 리뷰 (0) 쓰러가기

도서 구매 후 리뷰를 작성하시면 통합포인트를 드립니다.
결제 90일 이내 작성 시 300원 / 발송 후 5일 이내 작성시 400원 / 이 상품의 첫 리뷰 작성 시 500원
(포인트는 작성 후 다음 날 적립되며, 도서 발송 전 작성 시에는 발송 후 익일에 적립됩니다.
외서/eBook/음반/DVD/GIFT 및 잡지 상품 제외)
안내
  • 해당도서의 리뷰가 없습니다.

Klover 평점/리뷰 (0)

문장수집 (0) 문장수집 쓰기 나의 독서기록 보기
※구매도서의 문장수집을 기록하면 통합포인트 적립 안내

교환/반품/품절안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품/품절안내
반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
[1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
    또는 고객센터 (1544-1900)
반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유
  • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
  • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
  • 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
  • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
  • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
    해당되는 경우
(1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①양서-판매정가의 12%, ②일서-판매정가의 7%를 적용)
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
이메일과 문자로 안내드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
  • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
    소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
  • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
    소비자 보호에 관한 법률에 따라 처리함

이 분야의 베스트

  • 윤인성
    16,200원
  • 이남호
    23,310원
  • 한국데이터진흥원
    16,200원
  • 이남호
    23,310원
  • 윤종식
    25,200원
더보기+

이 분야의 신간

  • 블레이크 J. 해리스
    25,200원
  • 길벗R&D
    18,900원
  • 로버트 C. 마틴
    26,100원
  • 박해선
    17,820원
  • 이기창
    31,500원
더보기+

바로가기

  • 우측 확장형 배너 2
  • 우측 확장형 배너 2

최근 본 상품