본문내용 바로가기
MD의선택 무료배송 이벤트 사은품 소득공제

핸즈온 머신러닝 사이킷런, 케라스, 텐서플로 2를 활용한 머신러닝, 딥러닝 완벽 실무 | 텐서플로 2 반영 전면 컬러판 (2판)

2판
오렐리앙 제롱 지음 | 박해선 옮김 | 한빛미디어 | 2020년 05월 04일 출간
| 5점 만점에 5점 리뷰 1개 리뷰쓰기
  • 정가 : 55,000원
    판매가 : 49,500 [10%↓ 5,500원 할인]
  • 통합포인트 :
    [기본적립] 2,750원 적립 [5% 적립] [추가적립] 5만원 이상 구매 시 2천원 추가적립 안내 [회원혜택] 실버등급 이상, 3만원 이상 구매 시 2~4% 추가적립 안내
  • 추가혜택 : 포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 개정정보 : 이 도서는 가장 최근에 출간된 개정판입니다. 2018년 04월 출간된 구판이 있습니다. 구판 보기
  • 배송일정 : 서울특별시 종로구 세종대로 기준 지역변경
    지금 주문하면 내일(15일,수) 도착 예정 배송일정 안내
  • 바로드림 : 인터넷으로 주문하고 매장에서 직접 수령 안내 바로드림 혜택
    휴일에는 바로드림 픽업으로 더 빨리 받아 보세요. 바로드림 혜택받고 이용하기

이 책의 이벤트 해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.

  • 상반기 IT대표도서 표지의 고퀄리티 양장노트 사은품 선착순 소진..
    2020.06.24 ~ 2020.07.31
  • 행사도서 구매시, '핸즈 온 머신러닝 마우스 패드�..
    2020.05.29 ~ 2020.07.31
  • 새로 나온 O'Reilly 번역서를 확인해보세요!
    2019.06.14 ~ 2020.12.31
  • 개발자의 오랜친구, 한빛미디어의 책을 편리하게 모아보세요
    2017.11.22 ~ 2019.12.31
  • MANNING, O'REILLY, PACKT, WILE..
    2016.03.07 ~ 2020.12.31
상품상세정보
ISBN 9791162242964(1162242965)
쪽수 952쪽
크기 185 * 237 * 43 mm /1657g 판형알림
원서명/저자명 Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow/Aurelien Geron

책소개

이 책이 속한 분야

이 책의 주제어

컬러판으로 돌아온 아마존 인공지능 분야 부동의 1위 도서

이 책은 지능형 시스템을 구축하려면 반드시 알아야 할 머신러닝, 딥러닝 분야 핵심 개념과 이론을 이해하기 쉽게 설명한다. 사이킷런, 케라스, 텐서플로를 이용해 실전에서 바로 활용 가능한 예제로 모델을 훈련하고 신경망을 구축하는 방법을 상세하게 안내한다. 장마다 제공하는 연습문제를 풀며 익힌 내용을 확인하고 응용할 수도 있다. 머신러닝을 배우고 싶지만 어디서부터 시작해야 할지 막막하다면, 이 책이 인공지능 마스터로 가는 길에 좋은 친구가 될 것이다. 2판은 텐서플로 2를 반영하고 비지도 학습, 자연어 처리, 생성적 적대 신경망(GAN) 등 최신 기법을 추가했다.

상세이미지

핸즈온 머신러닝(2판) 도서 상세이미지

저자소개

저자 : 오렐리앙 제롱

저자가 속한 분야

머신러닝 컨설턴트. 2013년에서 2016년까지 구글에서 유튜브 동영상 분류팀을 이끌었다. 2002년에서 2012년까지 프랑스의 모바일 ISP 선두 주자인 Wifirst를 설립하고 CTO로 일했다. 2001년에는 Polyconseil을 설립하고 CTO로 일했다. 이 회사는 현재 전기차 공유 서비스인 Autolib’을 운영한다.

그 전에는 재무(JP 모건과 소시에테 제네랄), 방위(캐나다 DOD), 의료(수혈) 등 다양한 분야에서 엔지니어로 일했다. C++, WiFi, 인터넷 구조에 대한 몇 권의 기술 서적을 썼으며 한 프랑스 공과대학교에서 컴퓨터 과학을 가르쳤다.

저자가 속한 분야

박해선 ML GDE(Machine Learning Google Developer Expert). 기계공학을 전공했지만 졸업 후엔 줄곧 코드를 읽고 쓰는 일을 했다. 텐서 플로우 블로그(tensorflow.blog)에 글을 쓰고 텐서플로 문서 번역에 기여하면서 소프트웨어와 과학의 경계를 흥미롭게 탐험하고 있다.

『Do it! 딥러닝 입문』(이지스퍼블리싱, 2019)을 집필했다.

『미술관에 GAN 딥러닝 실전 프로젝트』(한빛미디어, 2019), 『파이썬을 활용한 머신러닝 쿡북』(한빛미디어, 2019), 『머신 러닝 교과서 with 파이썬, 사이킷런, 텐서플로』(길벗, 2019), 『파이썬 라이브러리를 활용한 머신러닝』(한빛미디어, 2019), 『케라스 창시자에게 배우는 딥러닝』(길벗, 2018), 『텐서플로 첫걸음』(한빛미디어, 2016)을 우리말로 옮겼다.

박해선님의 최근작

목차

[PART 1 머신러닝]

CHAPTER 1 한눈에 보는 머신러닝
1.1 머신러닝이란?
1.2 왜 머신러닝을 사용하는가?
1.3 애플리케이션 사례
1.4 머신러닝 시스템의 종류
1.5 머신러닝의 주요 도전 과제
1.6 테스트와 검증
1.7 연습문제

CHAPTER 2 머신러닝 프로젝트 처음부터 끝까지
2.1 실제 데이터로 작업하기
2.2 큰 그림 보기
2.3 데이터 가져오기
2.4 데이터 이해를 위한 탐색과 시각화
2.5 머신러닝 알고리즘을 위한 데이터 준비
2.6 모델 선택과 훈련
2.7 모델 세부 튜닝
2.8 론칭, 모니터링, 그리고 시스템 유지 보수
2.9 직접 해보세요!
2.10 연습문제

CHAPTER 3 분류
3.1 MNIST
3.2 이진 분류기 훈련
3.3 성능 측정
3.4 다중 분류
3.5 에러 분석
3.6 다중 레이블 분류
3.7 다중 출력 분류
3.8 연습문제

CHAPTER 4 모델 훈련
4.1 선형 회귀
4.2 경사 하강법
4.3 다항 회귀
4.4 학습 곡선
4.5 규제가 있는 선형 모델
4.6 로지스틱 회귀
4.7 연습문제

CHAPTER 5 서포트 벡터 머신
5.1 선형 SVM 분류
5.2 비선형 SVM 분류
5.3 SVM 회귀
5.4 SVM 이론
5.5 연습문제

CHAPTER 6 결정 트리
6.1 결정 트리 학습과 시각화
6.2 예측하기
6.3 클래스 확률 추정
6.4 CART 훈련 알고리즘
6.5 계산 복잡도
6.6 지니 불순도 또는 엔트로피?
6.7 규제 매개변수
6.8 회귀
6.9 불안정성
6.10 연습문제

CHAPTER 7 앙상블 학습과 랜덤 포레스트
7.1 투표 기반 분류기
7.2 배깅과 페이스팅
7.3 랜덤 패치와 랜덤 서브스페이스
7.4 랜덤 포레스트
7.5 부스팅
7.6 스태킹
7.7 연습문제

CHAPTER 8 차원 축소
8.1 차원의 저주
8.2 차원 축소를 위한 접근 방법
8.3 PCA
8.4 커널 PCA
8.5 LLE
8.6 다른 차원 축소 기법
8.7 연습문제

CHAPTER 9 비지도 학습
9.1 군집
9.2 가우시안 혼합
9.3 연습문제


[PART 2 신경망과 머신러닝]

CHAPTER 10 케라스를 사용한 인공 신경망 소개
10.1 생물학적 뉴런에서 인공 뉴런까지
10.2 케라스로 다층 퍼셉트론 구현하기
10.3 신경망 하이퍼파라미터 튜닝하기
10.4 연습문제

CHAPTER 11 심층 신경망 훈련하기
11.1 그레이디언트 소실과 폭주 문제
11.2 사전훈련된 층 재사용하기
11.3 고속 옵티마이저
11.4 규제를 사용해 과대적합 피하기
11.5 요약 및 실용적인 가이드라인
11.6 연습문제

CHAPTER 12 텐서플로를 사용한 사용자 정의 모델과 훈련
12.1 텐서플로 훑어보기
12.2 넘파이처럼 텐서플로 사용하기
12.3 사용자 정의 모델과 훈련 알고리즘
12.4 텐서플로 함수와 그래프
12.5 연습문제

CHAPTER 13 텐서플로에서 데이터 적재와 전처리하기
13.1 데이터 API
13.2 TFRecord 포맷
13.3 입력 특성 전처리
13.4 TF 변환
13.5 텐서플로 데이터셋 (TFDS) 프로젝트
13.6 연습문제

CHAPTER 14 합성곱 신경망을 사용한 컴퓨터 비전
14.1 시각 피질의 구조
14.2 합성곱 층
14.3 풀링 층
14.4 CNN 구조
14.5 케라스를 사용해 ResNet-34 CNN 구현하기
14.6 케라스에서 제공하는 사전훈련된 모델 사용하기
14.7 사전훈련된 모델을 사용한 전이 학습
14.8 분류와 위치 추정
14.9 객체 탐지
14.10 시맨틱 분할
14.11 연습문제

CHAPTER 15 RNN과 CNN을 사용해 시퀀스 처리하기
15.1 순환 뉴런과 순환 층
15.2 RNN 훈련하기
15.3 시계열 예측하기
15.4 긴 시퀀스 다루기
15.5 연습문제

CHAPTER 16 RNN과 어텐션을 사용한 자연어 처리
16.1 Char-RNN을 사용해 셰익스피어 같은 텍스트 생성하기
16.2 감성 분석
16.3 신경망 기계 번역을 위한 인코더-디코더 네트워크
16.4 어텐션 메커니즘
16.5 언어 모델 분야의 최근 혁신
16.6 연습문제

CHAPTER 17 오토인코더와 GAN을 사용한 표현 학습과 생성적 학습
17.1 효율적인 데이터 표현
17.2 과소완전 선형 오토인코더로 PCA 수행하기
17.3 적층 오토인코더
17.4 합성곱 오토인코더
17.5 순환 오토인코더
17.6 잡음 제거 오토인코더
17.7 희소 오토인코더
17.8 변이형 오토인코더
17.9 생성적 적대 신경망
17.10 연습문제

CHAPTER 18 강화 학습
18.1 보상을 최적화하기 위한 학습
18.2 정책 탐색
18.3 OpenAI 짐
18.4 신경망 정책
18.5 행동 평가: 신용 할당 문제
18.6 정책 그레이디언트
18.7 마르코프 결정 과정
18.8 시간차 학습
18.9 Q-러닝
18.10 심층 Q-러닝 구현하기
18.11 심층 Q-러닝의 변종
18.12 TF-Agents 라이브러리
18.13 그 외 유명한 강화 학습 알고리즘
18.14 연습문제

CHAPTER 19 대규모 텐서플로 모델 훈련과 배포
19.1 텐서플로 모델 서빙
19.2 모바일 또는 임베디드 장치에 모델 배포하기
19.3 계산 속도를 높이기 위해 GPU 사용하기
19.4 다중 장치에서 모델 훈련하기
19.5 연습문제


[PART 3 부록]

부록 A 연습문제 정답
부록 B 머신러닝 프로젝트 체크리스트
부록 C SVM 쌍대 문제
부록 D 자동 미분
부록 E 유명한 다른 인공 신경망 구조
부록 F 특수한 데이터 구조
부록 G 텐서플로 그래프


8. 관련 서적 (제목 + ISBN)
● 밑바닥부터 시작하는 딥러닝 2 / 9791162241745
● 미술관에 GAN 딥러닝 실전 프로젝트 / 9791162241080
● 파이썬 날코딩으로 알고 짜는 딥러닝 / 9791162242001

추천사

권순선(Global ML Ecosystem Programs Lead, 구글)

“이번 2판에서는 내지가 전부 흑백이 아닌 컬러로 전환되면서 시각적으로도 아주 큰 향상이 있었고, 비지도 학습, GAN 등 다루는 주제가 늘어났습니다. 그리고 책에서 다루는 소프트웨어도 텐서플로 2.x과 케라스로 업데이트되면... 더보기

김대근(AWS 데이터 사이언티스트)

“이 책은 판다스, 사이킷런 기반의 머신러닝 핵심 레시피와 텐서플로 2.0 기반의 딥러닝 핵심 레시피를 모두 소개하며, 기본적인 이론 및 배경까지 알기 쉽게 설명합니다. 이론 설명과 코드 구현의 적절한 균형을 이룬 책입니다.... 더보기

김주현(SK 주식회사)

“'핸즈온'이라는 제목답게 코드에 큰 비중을 두었고, 이론은 핵심 중심으로 압축해 기술한 책입니다. 심화 이론은 관련 논문을 인용해 보충합니다. 실전에서도 사용 가능한 수준의 완전한 코드를 쉽게 연습해볼 수 있는 매우 좋은 ... 더보기

백혜림(연세대학교 일반대학원 석사)

“초보자부터 실무자까지 머신러닝 분야를 공부하는 사람이라면 꼭 봐야 하는 필독서입니다. 물 흐르듯 자연스러운 설명이 이 책의 강점입니다. 풍부한 그림과 수식, 핵심 이론을 반영한 코드 예제가 실무에서 인공지능을 개발하는 여러... 더보기

변성윤(쏘카 머신러닝 엔지니어)

“이번 2판에는 정말 좋은 내용이 많이 추가되었습니다. 개인적으로 제일 만족스러운 부분 2곳이 있습니다. ‘텐서플로에서 데이터 적재와 전처리하기(13장)’와 ‘대규모 텐서플로 모델 훈련과 배포(19장)’입니다. 13장은 다양... 더보기

출판사 서평

머신러닝 전문가로 이끄는 최고의 실전 지침서
텐서플로 2.0을 반영한 풀컬러 개정판

이 책의 원서는 출간 직후부터 미국 아마존 인공지능 분야에서 줄곧 1위 자리를 지키고 있습니다. 가장 많은 명저가 경쟁하는 시장에서 이처럼 확고부동한 호응을 얻은 데는 그만한 이유가 있습니다. 이론과 활용을 적절히 섞으면서도 실무에서 확실히 통하도록 구성했고, 나아가 실무자들의 실력을 한층 끌어올려줄 깊이를 담았기 때문이죠.

완전히 새로워진 2판에서는 내지를 흑백에서 전면 컬러로 변경했습니다. 사이킷런, 케라스, 텐서플로 2.x을 사... 더보기

북로그 리뷰 (1) 전체보기 쓰러가기

도서 구매 후 리뷰를 작성하시면
결제 90일 이내 300원, 발송 후 5일 이내 400원, 이 상품의 첫 리뷰 500원의 포인트를 드립니다.

포인트는 작성 후 다음 날 적립되며, 도서 발송 전 작성 시에는 발송 후 익일에 적립됩니다.
북로그 리뷰는 본인인증을 거친 회원만 작성 가능합니다.
(※ 외서/eBook/음반/DVD/GIFT 및 잡지 상품 제외) 안내
  • 사실 핸즈온 머신러닝에 대한 책을 보기전에 표지만 봐도 머신러닝, 딥러닝에 관한 실제적인 설계법이나, 아니면 응용버같은 것을 알려주는 책인줄 알았지만, 이 책은 초보자가 봐도 될만큼 기초부터 시작하는 친절한 책이다. 이 책이 1판이 나오고 난 뒤 2판이 나오면서 컬러로 바뀌어 더욱 보기 쉬워졌고, 또한 최신 케라스 텐서플로우에 대한 이야기도 나오기 때문에, 머신러닝에 관심이 있는 사람이라면 참고하기 아주 좋은 도서이다. 첫 책 표지를 보았을 때 제목길이에 압도당했다. 사실 이 책을... 더보기

Klover 평점/리뷰 (0)

문장수집 (0) 문장수집 쓰기 나의 독서기록 보기
※구매도서의 문장수집을 기록하면 통합포인트 적립 안내

교환/반품/품절안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품/품절안내
반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
[1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
    또는 고객센터 (1544-1900)
반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유
  • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
  • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
  • 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
  • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
  • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
    해당되는 경우
(1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①양서-판매정가의 12%, ②일서-판매정가의 7%를 적용)
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
이메일과 문자로 안내드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
  • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
    소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
  • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
    소비자 보호에 관한 법률에 따라 처리함

이 분야의 베스트

더보기+

이 분야의 신간

  • NCS 정보처리기술사 연구회
    27,000원
  • 프롬소프트웨어
    35,100원
  • 김황후
    28,800원
  • 정혜정
    31,500원
  • 이미준
    20,700원
더보기+

바로가기

  • 우측 확장형 배너 2
  • 우측 확장형 배너 2

최근 본 상품