본문내용 바로가기
MD의선택 무료배송 이벤트 사은품 경품

처음 배우는 머신러닝 기초부터 모델링, 실전 예제, 문제 해결까지

김승연 , 정용주 지음 | 한빛미디어 | 2017년 10월 01일 출간
  • 정가 : 26,000원
    판매가 : 23,400 [10%↓ 2,600원 할인]
  • 제휴할인가 : 17,550 교보-롯데카드 최대 25% 청구할인 카드/포인트 안내
  • 통합포인트 :
    [기본적립] 1,300원 적립 [5% 적립] 안내 [추가적립] 5만원 이상 구매 시 2천원 추가적립 [회원혜택] 우수회원 5만원 이상 구매 시 2~3% 추가적립
  • 추가혜택 :
    naver네이버페이 결제 시 무조건 1% 추가 적립 payco페이코 결제 시 최대 1만원 적립 okcashbag 실 결제 금액의 0.5% 적립 안내
  • 배송비 : 무료 배송비 안내
  • 배송일정 : 서울특별시 종로구 세종대로 기준 지역변경
    당일배송 지금 주문하면 오늘(14일,목) 도착 예정 배송일정 안내
  • 바로드림 : 인터넷으로 주문하고 영업점에서 직접 수령 안내
행사도서 포함, 5만원이상 구매시 2018년 캘린더 증정
닫기
  • 나만의 경쟁력, 동양고전 김원중 명품고전 독서대 증정
  • 비모 벽시계
  • 자기계발:버리거나 혹은 얻거나
  • 경제경영 메인이벤트

이 상품의 꾸러미

이 책의 이벤트 해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.

  • 올해의 IT도서 트렌드, 영예의 주인공은 어떤 책일까요?
    2017.11.28 ~ 2017.12.31
  • 개발자의 오랜친구, 한빛미디어의 책을 편리하게 모아보세요
    2017.11.22 ~ 2019.12.31
  • 리드잇 IT칼럼 및 예약판매중인 책을 한 곳에서 보실 수 있습니..
    2017.11.22 ~ 2018.12.31
  • 설문참여 시 매월 5명 추첨통해 선물을 드립니다.
    10. 14 ~ 12. 31
상품상세정보
ISBN 9791162240045(1162240040)
쪽수 376쪽
크기 183 * 236 * 16 mm /664g 판형알림

책소개

이 책이 속한 분야

이 책의 주제어

머신러닝 기초 이론, 실전 예제, 문제 해결까지 한번에

이 책은 구글과 라쿠텐 머신러닝 개발자가 초보자 눈높이에서 머신러닝의 핵심 이론과 실용적인 예제를 제시합니다. 머신러닝 입문자가 이론을 바탕으로 강력한 성능을 내는 머신러닝 시스템을 구현하고 사용할 수 있도록 하는 것이 이 책의 목표입니다.
1부에서는 ‘머신러닝 기초 지식’, 2부에서는 ‘머신러닝 주요 모델’, 3부에서는 ‘머신러닝 시스템 구현’을 알려줍니다. 이론과 실무 예제와 해결 방법까지 모두 담고 있어 입문자뿐 아니라 이미 머신러닝을 현업에서 다루면서 체계적으로 실력을 다잡고자 하는 중고수에게도 최고의 선택이 될 겁니다.

상세이미지

처음 배우는 머신러닝 도서 상세이미지

저자소개

저자 : 김승연

저자 김승연은 막연히 인간이 무엇인지 데이터를 통해 이해하고 싶다며 컴퓨터공학과에 들어간 이후 머신러닝과 소프트웨어 개발의 길을 걷고 있다. 서울대학교에서 컴퓨터공학부를 마치고 조지아 공과대학에서 효율적인 문서의 표현형 학습에 대한 머신러닝을 연구하여 컴퓨터 과학 석사와 박사 학위를 취득했다. 현재 구글 리서치에 소속되어 모바일 환경에서의 머신러닝을 주제로 연구 개발하고 있다.

저자 : 정용주

저자 정용주는 서울대학교에서 컴퓨터공학과 고고미술사학을 전공하면서 발굴 데이터의 전산 분석 강좌를 통해 머신러닝의 가능성을 체험한 후 도쿄대학에서 머신러닝을 이용한 웹 스팸 검출에 관한 연구로 정보이공학 석사와 박사 학위를 취득했다. 그 후 일본 전자상거래기업 라쿠텐에서 데이터 분석 및 부정사용 검출에 종사했다. 현재는 스탠퍼드에서 1년의 방문연구원 생활 후 라쿠텐 미국 지사에서 데이터 분석을 담당하고 있다.

목차

[Part 1 머신러닝 기초 지식]
1장. 머신러닝 시작하기
__1.1 머신러닝 소개
__1.2 머신러닝을 이해하는 데 필요한 배경 지식
__1.3 머신러닝 발전사
__1.4 머신러닝의 분류
__1.5 마치며

2장. 머신러닝의 주요 개념
__2.1 모델 : 문제를 바라보는 관점
__2.2 손실함수
__2.3 최적화 : 실제로 문제를 푸는 방법
__2.4 모델 평가 : 실제 활용에서 성능을 평가하는 방법
__2.5 마치며

[Part 2 머신러닝 주요 모델]
3장. 데이터와 문제
__3.1 데이터형
__3.2 데이터양과 품질
__3.3 데이터 표준화
__3.4 문제 유형
__3.5 마치며

4장. 구매 이력 데이터를 이용한 사용자 그룹 만들기
__4.1 군집화
__4.2 K-중심 군집화
__4.3 계층적 군집화
__4.4 밀도 기반 군집화
__4.5 유사도 계산
__4.6 마치며

5장. 문서 분석 시스템 만들기
__5.1 문서 분류 시스템 만들기
__5.2 토픽 모델링
__5.3 문법 분석
__5.4 단어 임베딩 학습 - word2vec
__5.5 마치며

6장. 영화 추천 시스템 만들기
__6.1 영화 추천 시스템
__6.2 유사도 계산
__6.3 내용 기반 추천 시스템
__6.4 협업 필터링
__6.5 표준화
__6.6 마치며

7장. 이미지 인식 시스템 만들기
__7.1 이미지 처리의 기본 개념
__7.2 이미지 인식
__7.3 이미지 인식에 사용하는 피처
__7.4 딥러닝을 이용한 이미지 인식
__7.5 마치며

8장. 머신러닝의 다양한 문제점 해결하기
__8.1 모델 문제
__8.2 데이터 문제
__8.3 속도 문제
__8.4 마치며

[Part 3 머신러닝 시스템 구현]
9장. 머신러닝 소프트웨어 소개
__9.1 파이썬 설치와 라이브러리
__9.2 유명 라이브러리 소개
__9.3 이 책에서 사용하는 툴킷
__9.4 마치며

10장. 구매 이력 데이터를 이용한 사용자 그룹 만들기 - 실전
__10.1 데이터셋
__10.2 데이터 전처리
__10.3 K-평균 군집화
__10.4 올바른 클러스터 수 K 정하기
__10.5 계층적 군집화
__10.6 마치며

11장. 문서 분석 시스템 만들기 - 실전
__11.1 스팸 문자 필터 만들기(문서 분류)
__11.2 토픽 모델 시스템 만들기
__11.3 품사 분석 시스템 만들기
__11.4 고유명사 태깅 시스템 만들기
__11.5 한국어 위키백과를 이용한 word2vec 만들기
__11.6 마치며

12장. 영화 추천 시스템 만들기 - 실전
__12.1 데이터셋 구하기
__12.2 데이터 전처리
__12.3 내용 기반 영화 추천 시스템 만들기
__12.4 협업 필터링 기반 영화 추천 시스템 만들기
__12.5 마치며

13장. 이미지 인식 시스템 만들기 - 실전
__13.1 이미지 데이터를 이용한 K-평균 군집화
__13.2 주성분 분석을 이용한 사람 얼굴 인식
__13.3 CNN을 이용한 손글씨 숫자 분류
__13.4 마치며

부록 : 용어표

추천사

김진영(스냅, 데이터 과학자)

빅데이터에 이어 머신러닝은 이미 시대의 화두가 되었다. 정보 검색을 전공하고 데이터 과학자로 일해온 필자에게 이는 분명 반가운 소식이다. 머신러닝으로 모든 것을 해결할 수 있으며 해결해야 한다는 강박관념에 사로잡힌 사람을 많... 더보기

정준혁(텍사스A&M대학교 수학과 조교수)

머신러닝에 처음 관심을 두게 된 계기는 알파고와 이세돌의 대국이었다. 이세돌이 알파고에 패하고 나서 머신러닝에 관한 강연들에 수차례 참석하고, 관련 글도 여럿 읽어보았는데, 대부분 너무 전문적이거나 그 반대로 피상적이어서 지... 더보기

이준석(머신퍼셉션, 소프트웨어엔지니어)

세계적으로 머신러닝에 대한 관심이 대단한데, 그런 상황에 비해 초심자가 볼만한 책이 부족하다. 유명한 교재도 있지만 독자가 수학과 통계학 지식을 갖췄다고 전제하고, 실용적인 애플리케이션보다는 학술적인 내용에 중점을 두고 있기... 더보기

정은진(샌프란시스코 대학교 부교수)

머신러닝은 이세돌 9단과 바둑을 두고, 서울시 야간버스 노선 최적화를 돕는다. 그야말로 사회 전반에 걸쳐 폭넓게 이용되고 있다. 머신러닝을 배우려는 사람은 많지만, 기존 자료는 영어로 작성된 것들이 많아서 접근성이 떨어지는 ... 더보기

유승일(구글리서치 소프트웨어 엔지니어)

많은 소프트웨어 서비스가 데이터를 기반으로 품질을 계속 개선해나가는 추세다. 이러한 추세에 따라 데이터를 효과적으로 활용하는 기술인 머신러닝이 더욱 중요해지고 있다. 기본 개념부터 실제 서비스 응용에 이르기까지 확실하고 쉽게... 더보기

출판사 서평

★ 이 책에서 다루는 내용
이 책은 머신러닝 입문자가 알아야 하는 머신러닝의 전반적인 내용을 다룹니다. 여러분은 머신러닝이 왜 쓸모 있고 어떤 모델과 문제가 있는지, 실무에서 어떻게 사용하는지, 머신러닝의 다양한 문제를 어떻게 해결할 수 있는지, 프로그램 코드를 어떻게 만드는지 알게 될 겁니다.

[1부 머신러닝 기초 지식]
머신러닝과 딥러닝이 무엇이고 어떤 분류와 어떤 개념이 있는지 알아봅니다. 1부의 기본 개념은 3부의 실습에서 유용하게 사용되므로 정확히 알고 가는 것이 좋습니다.

-1장 머신러닝 시작하기
머신러닝... 더보기

북로그 리뷰 (2) 전체보기 쓰러가기

도서 구매 후 리뷰를 작성하시면 통합포인트를 드립니다.
결제 90일 이내 작성 시 300원 / 발송 후 5일 이내 작성시 400원 / 이 상품의 첫 리뷰 작성 시 500원
(포인트 적립은 작성 후 다음 날 혹은 해당 도서 출고 후 익일에 적립됩니다.
외서/eBook/음반/DVD/GIFT 및 잡지 상품 제외)
안내
  •     책을 읽게 된 이유 얼마전까지만해도 머신러닝이라는 것은 저와는 완전히 동떨어진 기술이고, 관심은 가지만 알필요는 없을 것 같다는 생각을 가지고 있었습니다. 왜냐하면 머신러닝을 설명하는 글들을 보면 항상 복잡한 수학 공식이 적혀 있었고, 이 공식들을 사용해서 컴퓨터를 학습시켜 미래를 예측한다는 내용이었기 때문에 너무 어려워보이고 범접할 수 없는 느낌이 들었기 때문입니다. 하지만 불과 1,2년 사이에 먼 이야기 같았던 머신러닝이 점점 생활 속으로 들어오고 익숙한 단어가 되고, 주 마다 찾... 더보기
  • 데이터 모델링, 그 중에서 특히 머신러닝에 대해서 꼭 한번 공부하고자 하여 구매하게 된 도서입니다. 입문자이기도 하고, 파이썬이라는 프로그래밍 언어가 이 분야에서는 가장 널리 쓰이는 것 같아서, 파이썬과 동시에 머신러닝이라는 개념과 활용방향 및 데이터 관련 예제들까지 다뤄볼 수 있겠다는 생각하에 가장 적합하다고 생각되는 본 도서를 선택하게 되었습니다. 금융분야 뿐만이 ... 더보기

Klover 평점/리뷰 (0)

교환/반품/품절안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품/품절안내
반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
[1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
    또는 고객센터 (1544-1900)
반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유
  • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
  • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
  • 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
  • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
  • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
    해당되는 경우
(1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①양서-판매정가의 12%, ②일서-판매정가의 7%를 적용)
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
이메일과 문자로 안내드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
  • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
    소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
  • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
    소비자 보호에 관한 법률에 따라 처리함

이 분야의 베스트

더보기+

이 분야의 신간

더보기+

바로가기

  • 우측 확장형 배너 2

최근 본 상품