본문내용 바로가기
MD의선택 무료배송 소득공제

XAI 설명 가능한 인공지능, 인공지능을 해부하다 블랙박스를 이해하고 시스템의 신뢰성을 높이기 위한

위키북스 데이터 사이언스 시리즈 53
안재현 지음 | 위키북스 | 2020년 03월 27일 출간
  • 정가 : 28,000원
    판매가 : 25,200 [10%↓ 2,800원 할인]
  • 통합포인트 :
    [기본적립] 1,400원 적립 [5% 적립] [추가적립] 5만원 이상 구매 시 2천원 추가적립 안내 [회원혜택] 실버등급 이상, 3만원 이상 구매 시 2~4% 추가적립 안내
  • 추가혜택 : 포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 배송일정 : 서울특별시 종로구 세종대로 기준 지역변경
    지금 주문하면 내일( 5일,금) 도착 예정 배송일정 안내
  • 바로드림 : 인터넷으로 주문하고 매장에서 직접 수령 안내 바로드림 혜택
    휴일에는 바로드림 픽업으로 더 빨리 받아 보세요. 바로드림 혜택받고 이용하기
상품상세정보
ISBN 9791158392000(1158392001)
쪽수 340쪽
크기 174 * 235 * 25 mm /746g 판형알림

책소개

이 책이 속한 분야

XAI(eXplainable Artificial Intelligence)는 인공지능의 판단 이유를 설명하는 연구 분야로, 인공지능 기술이 확대되면서 그 필요성이 함께 증가하고 있습니다. 이것은 알고리즘의 설계자조차 인공지능의 판단 이유를 설명하지 못하는 '블랙박스' 인공지능과 반대되는 개념입니다. XAI는 인공지능의 불확실한 의사 결정 과정을 해소해 인공지능에 대한 신뢰성을 높여줍니다.

이 책에는 전통적인 머신러닝 기법에 적용할 수 있는 XAI 기법부터 최신 딥러닝 모델에 사용할 수 있는 XAI 기법까지 수록돼 있습니다. XAI는 인공지능의 의사 결정 이유를 추정하는 기술이기 때문에 이론뿐만 아니라 기법 적용 과정 또한 중요합니다. 따라서 이 책에는 기존 XAI 서적에서 다루지 않았던 예제 코드를 함께 수록했습니다. 먼저 이론을 학습하고 해당 이론에 대응하는 코드를 따라 하면서 별도의 설치 과정 없이도 XAI 해석 결과를 직접 확인할 수 있습니다.

★ 이 책에서 다루는 내용 ★
◎ 피처 중요도
◎ 부분 의존성 플롯
◎ XGBoost 모델 구축
◎ LIME(Local Interpretable Model-agnostic Explanations)
◎ SHAP(SHapley Additive exPlanations)
◎ 필터 시각화
◎ 합성곱 신경망(CNN) 구축
◎ LRP(Layer-wise Relevance Propagation)
◎ 실전 분석 1: 신용 대출 분석 모델 구축하고 설명하기
◎ 실전 분석 2: 사진 감정 분석 모델 구축하고 설명하기

이 책의 총서

총서 자세히 보기

상세이미지

XAI 설명 가능한 인공지능, 인공지능을 해부하다(위키북스 데이터 사이언스 시리즈 53) 도서 상세이미지

저자소개

저자 : 안재현

(現) 넥슨코리아 인텔리전스랩스 데이터 과학자
(前) 버즈니 데이터 과학자
정보통신산업진흥원 소프트웨어 마에스트로 5기
서강대학교 데이터마이닝 연구실 졸업
서강대학교 컴퓨터공학과 졸업

목차

▣ 01장: 이야기를 열며
1.1. 다르파(DARPA)의 혁신 프로젝트
1.2. XAI (2016-2021)
1.3. XAI를 잘하기 위한 조건
___1.3.1. 기존 머신러닝 이론을 충분히 이해하기
___1.3.2. 설명 모델을 어떻게 접목할지 생각하기
1.4. xgboost를 사용한 XAI와 딥러닝 XAI?
1.5. 감사 인사

▣ 02장: 실습환경 구축
2.1. 파이썬 설치
2.2. PIP 설치
2.3. 텐서플로 설치
2.4. 주피터 노트북
2.4.1. Tensorflow-GPU 설치 확인

▣ 03장: XAI 개발 준비
3.1. 머신러닝 이해
3.2. 블랙박스 들여다보기
3.3. 시각화와 XAI의 차이 이해하기

▣ 04장: 의사 결정 트리
4.1. 의사 결정 트리 시각화
4.2. 피처 중요도 구하기
4.3. 부분 의존성 플롯(PDP) 그리기
4.4. XGBoost 활용하기
___4.4.1. XGBoost의 장점
___4.4.2. XGBoost는 딥러닝이 아니다
___4.4.3. 기본 원리
___4.4.4. 파라미터
___4.4.5. 실제 동작과 팁
4.5. 실습 1: 피마 인디언 당뇨병 결정 모델
___4.5.1. 학습하기
___4.5.2. 설명 가능한 모델 결합하기
___4.5.3. 모델 튜닝하기
___4.5.4. 마치며

▣ 05장: 대리 분석
5.1. 대리 분석 개론
___5.1.1. 글로벌 대리 분석
___5.1.2. 로컬 대리 분석(Local Surrogate)
5.2. LIME
___5.2.1. LIME 알고리즘, 직관적으로 이해하기
___5.2.2. 배경 이론
___5.2.3. 실습 2: 텍스트 데이터에 LIME 적용하기
___5.2.4. 실습 3: 이미지 데이터에 LIME 적용하기
___5.2.5. 마치며
5.3. SHAP (SHapley Additive exPlanations)
___5.3.1. 배경 이론
___5.3.2. 실습 4: 공유 경제 스타트업에서 섀플리 값 사용하기
___5.3.3. 실습 5: 보스턴 주택 가격 결정 요소 구하기
___5.3.4. 마치며

▣ 06장: 필터 시각화(Filter Visualization)
6.1. 이미지 필터 시각화
6.2. 설명 가능한 모델 결합하기
___6.2.1. 합성곱 신경망과 필터
6.3. 합성곱 신경망 제작하기
6.4. 실습 6: 합성곱 신경망 시각화하기
___6.4.1. 입력값 시각화하고 예측값과 비교하기
___6.4.2. 필터 시각화
6.5. 마치며

▣ 07장: LRP(Layer-wise Relevance Propagation)
7.1. 배경 이론
___7.1.1. 분해(Decomposition)
___7.1.2. 타당성 전파
7.2. 실습 7: 합성곱 신경망 속 열어보기
___7.2.1. 합성곱 신경망 학습하기
___7.2.2. 합성곱 신경망 부분 그래프 구하기
___7.2.3. 합성곱 신경망에 LRP 적용하기
___7.3. LRP 등장 이전과 이후의 딥러닝 XAI 동향
7.4. 마치며

▣ 08장: 실전 분석 1: 의사 결정 트리와 XAI
8.1. 신용 대출 분석 인공지능 만들기
___8.1.1. 데이터 설명
___8.1.2. 칼럼 설명
___8.1.3. 데이터 불러오기
___8.1.4. 데이터 학습하기
8.2. XAI를 결합하기
8.3. XAI로 모델을 파악하기
8.4. XAI로 모델 개선 근거 마련하기

▣ 09장: 실전 분석 2: LRP와 XAI
9.1. 감정 분석 모델 만들기
___9.1.1. 데이터 설명
___9.1.2. 칼럼 설명
___9.1.3. 데이터 불러오기
___9.1.4. 데이터 학습하기
9.2. XAI 결합하기
9.3. XAI로 원래 인공지능 개선하기
9.4. 고지사항

▣ 10장: 이야기를 닫으며
10.1. 암흑물질 찾기
10.2. 기존 모델에 XAI 덧입히기
10.3. XAI의 미래

▣ 11장: 참고자료
11.1. XAI 실습 라이브러리 설치하기
___11.1.1. 파이썬 설치
___11.1.2. 파이썬 라이브러리 설치
___11.1.3. 텐서플로 설치
11.2. 캔들스틱 차트
11.3. 컨퓨전 행렬
___11.3.1. 정확도(Accuracy)
___11.3.2. 정밀성(Precision)
___11.3.3. 민감도(Sensitivity, 또는 Recall)
___11.3.4. 특이성(Specificity)
___11.3.5. 낙제율(Fallout)
___11.3.6. F1-점수(F1-score)
11.4. 텐서플로 슬림
11.5. 정규화

북로그 리뷰 (0) 쓰러가기

도서 구매 후 리뷰를 작성하시면
결제 90일 이내 300원, 발송 후 5일 이내 400원, 이 상품의 첫 리뷰 500원의 포인트를 드립니다.

포인트는 작성 후 다음 날 적립되며, 도서 발송 전 작성 시에는 발송 후 익일에 적립됩니다.
북로그 리뷰는 본인인증을 거친 회원만 작성 가능합니다.
(※ 외서/eBook/음반/DVD/GIFT 및 잡지 상품 제외) 안내
  • 해당도서의 리뷰가 없습니다.

Klover 평점/리뷰 (0)

문장수집 (0) 문장수집 쓰기 나의 독서기록 보기
※구매도서의 문장수집을 기록하면 통합포인트 적립 안내

교환/반품/품절안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품/품절안내
반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
[1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
    또는 고객센터 (1544-1900)
반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유
  • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
  • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
  • 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
  • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
  • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
    해당되는 경우
(1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①양서-판매정가의 12%, ②일서-판매정가의 7%를 적용)
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
이메일과 문자로 안내드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
  • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
    소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
  • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
    소비자 보호에 관한 법률에 따라 처리함

이 분야의 베스트

더보기+

이 분야의 신간

더보기+

바로가기

  • 우측 확장형 배너 2
  • 우측 확장형 배너 2

최근 본 상품