본문내용 바로가기
MD의선택 무료배송 이벤트 사은품 소득공제

알파고를 분석하며 배우는 인공지능 딥 러닝, 몬테카를로 트리 탐색, 듀얼 네트워크, 강화 학습 구조 이해하기

제이펍의 인공지능 시리즈 17
오츠키 토모시 지음 | 정인식 옮김 | 제이펍 | 2019년 07월 25일 출간
  • 정가 : 26,000원
    판매가 : 23,400 [10%↓ 2,600원 할인]
  • 통합포인트 :
    [기본적립] 1,300원 적립 [5% 적립] [추가적립] 5만원 이상 구매 시 2천원 추가적립 안내 [회원혜택] 실버등급 이상, 3만원 이상 구매 시 2~4% 추가적립 안내
  • 추가혜택 : 포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 배송일정 : 서울특별시 종로구 세종대로 기준 지역변경
    03월 30일 출고 예정 배송일정 안내
  • 바로드림 : 인터넷으로 주문하고 매장에서 직접 수령 안내 바로드림 혜택
    휴일에는 바로드림 픽업으로 더 빨리 받아 보세요. 바로드림 혜택받고 이용하기

이 책의 이벤트 해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.

  • 행사도서 포함 IT 분야 3만원 이상 구매시 개발자 텀블러티슈 ..
    2019.11.05 ~ 2020.03.31
  • 개발자로 입문하기: 일단 이것부터 읽어보자!
    2019.05.31 ~ 2020.12.31
  • 제이펍의 도서를 한 눈에 살펴보세요
    2017.11.23 ~ 2020.12.31
  • MANNING, O'REILLY, PACKT, WILE..
    2016.03.07 ~ 2020.12.31
상품상세정보
ISBN 9791188621644(1188621645)
쪽수 292쪽
크기 171 * 226 * 20 mm /560g 판형알림
이 책의 원서/번역서 最强圍碁AIアルファ碁解體新書 深層學習,モンテカルロ木探索,强化學習から見たその仕組み/大槻知史

책소개

이 책이 속한 분야

알파고를 통해 인간의 지혜를 넘어선 한 수의 비밀을 탐구한다!
인공지능은 어떻게 인간의 두뇌를 뛰어넘도록 설계되고 진화했을까?
이세돌을 비롯한 많은 프로 바둑기사를 제압한 알파고를 통해 인공지능의 구조와 원리를 파헤친다!

2016년 3월, 이세돌 9단과 알파고의 세기의 대전이 열렸다. 결과는 4승 1패로 알파고의 승리. 2017년 5월에는 커제 9단과 알파고의 대국이 열렸다. 결과는 알파고의 3연승. 이후 알파고의 진화는 계속되었고, 2017년 10월에는 알파고 제로에 관한 논문이 발표되었다. 그리고, 알파고 제로는 기존 알파고에 100연승하였다. 이렇듯 인공지능 기술은 일취월장하고 있으며, 특히 머신 러닝, 딥 러닝, 강화 학습 분야에 주력하고 있다.

저자 오츠키 토모시는 《네이처》에 게재된 알파고 및 알파고 제로에 관한 난해한 학술 논문을 읽고 해석해서 알파고에 이용되는 딥 러닝, 강화 학습, 몬테카를로 트리 탐색과 알파고 제로에 이용되는 듀얼 네트워크의 구조에 대해 알기 쉽게 설명했다. 이 책을 통해 최신 인공지능 기술이 알파고 및 알파고 제로에 어떻게 이용되는지 파악하고, 이를 다양한 연구 개발에 활용하기 위한 아이디어를 얻을 수 있을 것이다.

이 책의 총서

총서 자세히 보기

상세이미지

알파고를 분석하며 배우는 인공지능(제이펍의 인공지능 시리즈 17) 도서 상세이미지

저자소개

저자 : 오츠키 토모시

2001년에 도쿄대학 계수공학과를 졸업하였으며, 2003년에 도쿄대학원의 신영역 창성과학연구과의 석사 과정을 수료하였다. 이후 머신러닝 및 최적화 등의 연구와 개발에 참여하였다. 2001년부터 게임 AI 프로그래머로서 바둑 및 장기 프로그램 개발에 참여하였는데, 그가 개발한 장기 프로그램 ‘오쇼기’는 2009년 세계 컴퓨터 장기 선수권 대회에서 2위를 차지했다. 한편, 그는 정보 이공학 박사 학위 소유자이기도 하다.

역자 : 정인식

숭실대학교에서 전자계산학을 전공하였다. 사회 초년생 시절 자바에 심취해 현대정보기술에서 웹 애플리케이션을 개발하였고, 그 후 이동통신 단말기 분야로 옮겨 휴대전화 단말기의 부가서비스 개발 업무를 진행하였다. 그리고 일본 키스코 모바일사업부의 팀장을 거쳐, 일본 교세라의 북미향 휴대전화기 개발에 참여하였다. 지금은 일본의 주요 이동통신사에서 업무 프로세스 개선을 위한 IT 컨설팅 및 데이터 분석 관련 도구를 개발하고 있다. 또한, 《빅데이터를 지탱하는 기술》, 《유니티 5로 만드는 3D/2D 스마트폰 게임 개발》, 《자바 마스터 북》, 《자바스크립트 마스터 북》 등을 비롯해 10여 종의 책을 번역하였다.

목차

CHAPTER 1 알파고의 등장 1
1.1 게임 AI의 역사와 발전 2
1.1.1 앨런 튜링과 AI 2
1.2 천재 데미스 하사비스의 등장 5
1.2.1 신동 데미스 하사비스 5
1.3 알파고의 활약 7
1.3.1 알파고의 활약 7
1.4 바둑 AI의 기초 13
1.4.1 바둑의 규칙 13
1.4.2 바둑 AI를 구현한다는 것은 무엇인가? 16
1.4.3 ‘다음의 한 수’ 태스크 20
1.4.4 ‘다음의 한 수’ 태스크의 어려운 점 21
1.4.5 머신 러닝을 이용한 ‘다음의 한 수’ 태스크 22
1.4.6 알파고의 롤 아웃 정책 학습 26
1.5 정리 30

CHAPTER 2 딥 러닝 - 바둑 AI는 순간적으로 수를 떠올린다 31
이 장에서 설명할 내용 32
2.1 딥 러닝이란? 34
2.1.1 AI는 사람의 직관을 실현할 수 있을까? 34
2.2 필기체 숫자 인식의 예 42
2.2.1 필기체 숫자 인식이란? 42
2.2.2 필기체 숫자 인식의 데이터 세트 ‘MNIST’ 42
2.2.3 신경망을 사용한 필기체 숫자 인식 44
2.2.4 필기체 숫자 인식에 대한 컨볼루션 신경망 47
2.2.5 다단계의 신경망에서도 유효한 활성화 함수 51
2.2.6 오류 역전파 방법에 기초한 CNN의 필터 가중치 학습 54
2.2.7 화상 처리 CNN의 발전 60
2.3 알파고의 컨볼루션 신경망 64
2.3.1 알파고의 컨볼루션 신경망 64
2.3.2 ‘다음의 한 수’ 태스크와 화상 인식의 유사성 65
2.3.3 바둑의 수를 선택하는 CNN - SL 정책 네트워크 66
2.3.4 SL 정책 네트워크의 입력 48채널의 특징 71
2.3.5 SL 정책 네트워크의 컨볼루션 계산 예 75
2.3.6 SL 정책 네트워크의 계산량 77
2.3.7 SL 정책 네트워크의 학습용 데이터 획득 81
2.3.8 SL 정책 네트워크의 학습 기법 84
2.3.9 SL 정책 네트워크의 학습 결과 87
2.3.10 국면의 유리 불리를 예측하는 CNN(밸류 네트워크) 90
2.4 Chainer로 CNN 학습시키기 93
2.4.1 MNIST의 신경망 학습 부분 작성하기 93
2.4.2 SL 정책 네트워크의 학습 부분 작성하기 96
2.5 정리 100

CHAPTER 3 강화 학습 - 바둑 AI는 경험을 배운다 101
이 장에서 설명할 내용 102
3.1 강화 학습이란? 104
3.1.1 어떻게 경험에서 배울 것인가? 104
3.2 강화 학습의 역사 108
3.2.1 강화 학습 108
3.3 멀티 암드 밴딧 문제 112
3.3.1 강화 학습의 사례 112
3.3.2 UCB1 알고리즘 116
3.4 미로를 풀기 위한 강화 학습 118
3.4.1 4 × 4칸으로 이루어진 미로 118
3.4.2 가치 기반의 방식: Q 학습을 통해 미로 해결 120
3.4.3 정책 기반 방식: 정책 경사법을 통해 미로 해결 124
3.5 비디오 게임 조작 스킬을 얻기 위한 강화 학습 127
3.5.1 DQN 127
3.6 알파고의 강화 학습 131
3.6.1 알파고의 강화 학습 131
3.6.2 정책 경사법에 근거하는 강화 학습 134
3.6.3 RL 정책 네트워크의 성능 137
3.6.4 밸류 네트워크 학습용의 데이터 작성 기법 138
3.7 정리와 과제 143

CHAPTER 4 탐색 - 바둑 AI는 어떻게 예측할까? 145
이 장에서 설명할 내용 146
4.1 2인 제로섬 유한 확정 완전 정보 게임 148
4.1.1 어떻게 수를 예측할까? 148
4.2 게임에서의 탐색 153
4.2.1 SL 정책 네트워크 153
4.3 기존의 게임 트리 탐색(민맥스 트리 탐색) 155
4.3.1 ‘완전 탐색’의 개념 155
4.3.2 탐색 포인트 ? 가지치기와 평가 함수 162
4.4 바둑에서의 몬테카를로 트리 탐색 165
4.4.1 몬테카를로 방법 165
4.4.2 바둑에서의 몬테카를로 방법: 원시 몬테카를로 166
4.4.3 몬테카를로 트리 탐색 170
4.4.4 몬테카를로 트리 탐색의 결과와 최종적인 수 탐색 179
4.4.5 몬테카를로 트리 탐색의 개선 182
4.5 몬테카를로 트리 탐색의 성공 요인과 과제 185
4.5.1 CrazyStone과 Gnu Go 185
4.5.2 단 1줄로 다시 태어난 CrazyStone 186
4.6 정리 188
4.6.1 탐색 188

CHAPTER 5 알파고의 완성 189
5.1 알파고의 설계도 190
5.1.1 알파고의 재료 190
5.1.2 전체를 제어하는 AI 192
5.2 비동기 정책 가치 갱신 몬테카를로 트리 탐색 195
5.2.1 세 가지 정책의 특징 195
5.2.2 비동기 정책 가치 갱신 몬테카를로 트리 탐색 197
5.2.3 APV-MCTS의 선택 처리 200
5.2.4 APV-MCTS의 전개 처리 201
5.2.5 APV-MCTS의 평가 처리 201
5.2.6 APV-MCTS의 갱신 처리 202
5.3 대량 CPU·GPU의 이용 204
5.3.1 대량의 CPU와 GPU에 의한 병렬 탐색 204
5.3.2 로크리스 해시 206
5.3.3 가상 손실 208
5.4 알파고의 강력함 211
5.4.1 몬테카를로 트리 탐색, 밸류 네트워크, 정책 네트워크의 조합 효과 211

CHAPTER 6 알파고에서 알파고 제로로 213
6.1 시작에 앞서 214
6.2 알파고 제로에서의 딥 러닝 216
6.2.1 듀얼 네트워크의 구조 218
6.2.2 듀얼 네트워크의 학습 224
6.2.3 알파고 제로의 딥 러닝 정리 227
6.3 알파고 제로에서의 몬테카를로 트리 탐색 228
6.3.1 알파고 제로의 몬테카를로 트리 탐색 개요 228
6.3.2 몬테카를로 트리 탐색의 플로 차트 230
6.3.3 알파고 제로의 몬테카를로 트리 탐색 정리 233
6.4 알파고 제로에서의 강화 학습 234
6.4.1 알파고 제로의 강화 학습 기법 236
6.4.2 강화 학습의 계산 시간 242
6.4.3 알파고 제로의 강화 학습은 무엇을 하고 있나? 245
6.4.4 강화 학습의 효과 247
6.4.5 알파고 제로의 강화 학습 정리와 그 후의 진전 248
6.5 알파고 제로의 강력함 251
6.6 알파고 제로는 지식 없이 만들 수 있을까? 253
6.7 알파고나 알파고 제로에 약점은 있을까? 255
6.7.1 알파고와 알파고 제로의 약점 가능성 255
6.8 알파고 제로의 향후 미래 257
6.8.1 바둑계의 미래는 어떻게 될까? 257
6.8.2 AI의 과제 258

Appendix 1 수식에 관하여 263
A1.1 콘볼루션 신경망의 학습 법칙 도출 264
A1.1.1 SL 정책 네트워크의 학습 법칙 도출 264
A1.1.2 밸류 네트워크의 학습 법칙 도출 265
A1.1.3 듀얼 네트워크의 손실 함수에 관한 보충 267
A1.2 강화 학습의 학습 법칙 도출 269
A1.2.1 파알고의 RL 정책 네트워크 강화 학습 방법의 학습 법칙 도출 269
A1.2.2 미로를 예로 든 정책 경사법의 학습 법칙 도출 271

Appendix 2 바둑 프로그램용 UI 소프트웨어 GoGui 및 GoGui용 프로그램 DeltaGo 이용 방법 273
A2.1 DeltaGo란? 274
A2.1.1 DeltaGo의 특징 274
A2.2 GoGui의 설치 및 GoGui용 프로그램 DeltaGo 이용 방법 276
A2.2.1 DeltaGo 다운로드와 압축 풀기 276

찾아보기 289

책 속으로

머신 러닝이란 컴퓨터에 ‘학습’을 시켜서 어떤 태스크에 대한 컴퓨터의 ‘예측 능력’과 ‘판별 능력’을 향상시켜 나가는 방법이다. 컴퓨터는 모든 국면을 기억할 수 없지만, ‘비슷한 국면에서 유사한 수가 좋은 수가 될 것이다’라는 것을 가정하여 배후에 있는 규칙성을 구하는 것이 목표다.
_22쪽

CNN에서는 필터 가중치가 공유되므로 모든 링크에 독립적인 가중치(파라미터)를 주는 전체 결합 네트워크와 비교하면 학습해야 할 파라미터의 수가 적다. 예를 들어, 만일 3 × 3의 필터가 16개인 경우, 파라미터의 수는 입력 16개, 출... 더보기

북로그 리뷰 (1) 전체보기 쓰러가기

도서 구매 후 리뷰를 작성하시면 통합포인트를 드립니다.
결제 90일 이내 작성 시 300원 / 발송 후 5일 이내 작성시 400원 / 이 상품의 첫 리뷰 작성 시 500원
(포인트는 작성 후 다음 날 적립되며, 도서 발송 전 작성 시에는 발송 후 익일에 적립됩니다.
외서/eBook/음반/DVD/GIFT 및 잡지 상품 제외)
안내
  • 이 책을 읽어본 결과, 장점은 다음과 같습니다. 1. 최근에 뜨거운 관심을 받았던 알파고의 빌드업 과정에 대해 쉽게 이해할 수가 있다. 2. 강화학습 환경구성 및 인식에는 무엇이 중요하며, 학습과정에서는 어떤 정책이 기반으로 되는지, 이세돌과의 대결에서 알파고는 어떻게 작동하고 있었는지 쉽게 이해할 수가 있다. 3. 시각적 자료가 잘 정리되어 있다. 4. 기반 논문에 대한 제목을 하나하나 첨부해주었기에, 더 자세하게 공부하고 싶을 경우, 편하게 접근할 수가 있다.  5. 딥러닝, 강화학습 등에 대... 더보기

Klover 평점/리뷰 (0)

문장수집 (0) 문장수집 쓰기 나의 독서기록 보기
※구매도서의 문장수집을 기록하면 통합포인트 적립 안내

교환/반품/품절안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품/품절안내
반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
[1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
    또는 고객센터 (1544-1900)
반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유
  • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
  • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
  • 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
  • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
  • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
    해당되는 경우
(1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①양서-판매정가의 12%, ②일서-판매정가의 7%를 적용)
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
이메일과 문자로 안내드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
  • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
    소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
  • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
    소비자 보호에 관한 법률에 따라 처리함

이 책의 원서번역서

안내

이 분야의 베스트

  • 천인국
    30,000원
  • 천인국
    24,000원
  • 윤인성
    16,200원
  • 조블리(조애리)
    20,700원
  • 김대수
    26,000원
더보기+

이 분야의 신간

더보기+

바로가기

  • 우측 확장형 배너 2
  • 우측 확장형 배너 2

최근 본 상품