본문내용 바로가기
MD의선택 무료배송 이벤트 사은품 소득공제

파이썬 머신러닝 실무 테크닉 100

아이러브 A.I. 35
시모야마 데루마사 , 미키 다카유키 , 이토 준지 지음 | 김모세 옮김 | 제이펍 | 2021년 12월 14일 출간
클로버 리뷰쓰기
  • 정가 : 25,000원
    판매가 : 22,500 [10%↓ 2,500원 할인]
  • 혜택 :
    [기본적립] 1250원 적립 [5% 적립] [추가적립] 5만원 이상 구매 시 2,000원 추가적립 안내 [회원혜택] 회원 등급 별, 3만원 이상 구매 시 2~4% 추가적립 안내 [리뷰적립] 리뷰 작성 시 e교환권 최대 300원 추가적립 안내
  • 추가혜택 : 포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 배송일정 : 서울특별시 종로구 세종대로 기준 지역변경
    당일배송 지금 주문하면 오늘(27일,금) 도착 예정 배송일정 안내
  • 바로드림 : 인터넷으로 주문하고 매장에서 직접 수령 안내 바로드림 혜택
    휴일에는 바로드림 픽업으로 더 빨리 받아 보세요. 바로드림 혜택받고 이용하기

이 책의 이벤트

해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.
  • 6월 2일 개발자 북콘서트 사전신청하고 선물 받자!
    2022.05.11 ~ 2022.05.31
  • [교보단독 사은품] 개발자 매거진 <리드잇zine> ..
    2022.05.10 ~ 2022.06.30
  • 기술스택 별 개발자 채용공고 비중 공개+추천도서!
    2021.12.24 ~ 2022.12.31
  • 새로운 파이썬 책을 발견해보세요! 전체 목록 다운로드 제공!
    2016.08.11 ~ 2023.12.31
상품상세정보
ISBN 9791191600438(1191600432)
쪽수 300쪽
크기 171 * 225 * 22 mm /534g 판형알림
이 책의 원서/번역서 PYTHON實踐機械學習システム100本ノック / 下山輝昌

책소개

이 책이 속한 분야

100개의 실전 예제를 풀며 익히는 머신러닝 & 데이터 활용법
이것이 현장에서 활용할 수 있는 데이터 활용술!
우리가 사는 세상은 그야말로 데이터로 가득한 세상입니다. 주위를 보면 데이터가 아닌 것이 없을 만큼, 우리 주위에는 수많은 데이터가 넘쳐납니다. 최근에는 이 데이터를 어떻게 활용하느냐가 개인과 비즈니스의 성과와 실적을 판가름하는 요인이 되었습니다. 하지만 실무 현장에서의 기술 활용이나 대처 방법과 같은 노하우는 입문서로 공부하는 것만으로는 결코 익힐 수 없습니다.

이 책은 큰 호평을 받았던 《파이썬 데이터 분석 실무 테크닉 100》을 잇는 것으로, 실제 실무 현장을 가정한 100개의 문제를 풀면서 현장의 관점과 응용력을 몸에 익히도록 구성한 활용서입니다. 데이터 활용 프로젝트를 시작하고, 회사 안에서 확실하게 정착시키기 위한 첫 걸음을 내딛으시기 바랍니다!

상세이미지

파이썬 머신러닝 실무 테크닉 100(아이러브 A.I. 35) 도서 상세이미지

목차

PART 1 데이터 분석 시스템
CHAPTER 01 분석 준비를 위한 테크닉 10 3
테크닉 1 데이터를 모두 로딩하자 5
테크닉 2 데이터를 유니온(결합)하자 9
테크닉 3 폴더 안에 있는 파일을 확인하자 11
테크닉 4 여러 데이터를 유니온(결합)하자 13
테크닉 5 데이터 통계량을 확인하자 16
테크닉 6 불필요한 데이터를 제거하자 18
테크닉 7 마스터 데이터를 조인(결합)하자 20
테크닉 8 마스터가 존재하지 않는 코드에 이름을 설정하자 21
테크닉 9 분석 기초 테이블을 파일에 저장하자 24
테크닉 10 셀을 사용하기 쉽게 정리하자 25

CHAPTER 02 데이터를 시각화하고 분석하기 위한 테크닉 10 28
테크닉 11 데이터를 로딩하고 불필요한 항목을 제외하자 29
테크닉 12 데이터 전체 이미지를 파악하자 32
테크닉 13 월별 매출을 집계하자 34
테크닉 14 월별 추이를 시각화하자 37
테크닉 15 매출로부터 히스토그램을 만들자 39
테크닉 16 시/도/군/구별 매출을 집계해서 시각화하자 41
테크닉 17 클러스터링을 위해 데이터를 가공하자 43
테크닉 18 클러스터링을 이용해 매장을 그룹화하자 45
테크닉 19 그룹의 경향을 분석하자 47
테크닉 20 클러스터링 결과를 t-SNE로 시각화하자 48

CHAPTER 03 시각화 구조를 구축하기 위한 테크닉 10 51
테크닉 21 매장을 필터링해서 시각화하자 53
테크닉 22 여러 매장의 상세 정보를 시각화하자 58
테크닉 23 슬라이드바를 이용해 주문 건수를 조사하자 61
테크닉 24 토글 버튼을 이용해 지역 데이터를 추출하자 63
테크닉 25 날짜를 지정해 데이터를 추출하자 66
테크닉 26 스토리를 생각해서 데이터를 구축하자 69
테크닉 27 주문 취소 이유를 분석하자 75
테크닉 28 가설을 검증하자 76
테크닉 29 스토리를 기반으로 부속과 데이터를 조합해 대시보드를 만들자 80
테크닉 30 대시보드를 개선하자 87

CHAPTER 04 보고 구조를 만들기 위한 테크닉 10 91
테크닉 31 특정 매장의 매출을 엑셀로 출력하자 93
테크닉 32 엑셀 테이블을 정리해 출력하자 99
테크닉 33 매출 이외의 데이터도 출력하자 101
테크닉 34 문제가 있는 위치를 빨간색으로 출력하자 104
테크닉 35 엑셀의 셀 함수를 이용해 일 단위로 집계하자 105
테크닉 36 꺾은선 그래프로 출력하자 107
테크닉 37 보고서용 데이터를 준비하자 109
테크닉 38 데이터시트에 필요한 데이터를 출력하자 113
테크닉 39 요약 시트를 만들자 116
테크닉 40 매장별 보고서를 엑셀로 출력하자 121

CHAPTER 05 분석 시스템을 구축하기 위한 테크닉 10 123
테크닉 41 기본 폴더를 만들자 125
테크닉 42 입력 데이터 확인 구조를 만들자 127
테크닉 43 보고서(본부용) 작성 처리를 함수화하자 132
테크닉 44 보고서(매장용) 작성 처리를 함수화하자 136
테크닉 45 함수를 실행하고 동작을 확인하자 141
테크닉 46 데이터 업데이트에 대응해 폴더를 만들자 143
테크닉 47 시/도/군/구별로 폴더를 만들고 데이터를 출력하자 144
테크닉 48 지난달 데이터를 동적으로 로딩하자 146
테크닉 49 과거 데이터와 비교하자 151
테크닉 50 화면에서 실행할 수 있게 하자 153

PART 2 머신러닝 시스템
CHAPTER 06 머신러닝용 데이터를 가공하기 위한 테크닉 10 161
테크닉 51 데이터 가공을 위한 밑준비를 하자 162
테크닉 52 데이터를 로딩하고 데이터 가공 방향성을 검토하자 164
테크닉 53 1개월분 데이터로 기본적인 가공을 하자 166
테크닉 54 머신러닝용 변수를 만들자 168
테크닉 55 매장 단위로 집계해서 변수를 만들자 170
테크닉 56 데이터 가공과 매장별 집계를 함수로 실행하자 173
테크닉 57 모든 데이터를 로딩하고 데이터를 가공하자 176
테크닉 58 목적 변수를 만들자 178
테크닉 59 설명 변수와 목적 변수를 연결해 머신러닝용 데이터를 완성하자 181
테크닉 60 머신러닝용 데이터를 확인하고 출력하자 182

CHAPTER 07 머신러닝 모델을 구현하기 위한 테크닉 10 185
테크닉 61 폴더를 만들고 머신러닝용 데이터를 저장하자 186
테크닉 62 범주형 변수에 대응하자 187
테크닉 63 학습 데이터와 테스트 데이터를 나누자 189
테크닉 64 모델 하나를 구현하자 190
테크닉 65 모델을 평가하자 192
테크닉 66 모델의 중요도를 확인해 보자 196
테크닉 67 모델 구현부터 평가까지의 과정을 함수화하자 197
테크닉 68 모델 파일과 평가 결과를 출력하자 199
테크닉 69 알고리즘을 확장해 다각적으로 평가하자 200
테크닉 70 평일/휴일 모델을 한 번에 실행하자 203

CHAPTER 08 머신러닝 모델로 새로운 데이터를 예측하기 위한 테크닉 10 208
테크닉 71 폴더를 만들고 데이터 로딩을 준비하자 209
테크닉 72 예측할 신규 데이터를 로딩하자 210
테크닉 73 신규 데이터를 매장별로 집계하자 212
테크닉 74 신규 데이터의 범주형 변수에 대응하자 215
테크닉 75 모델 투입 직전의 형식으로 정리하자 216
테크닉 76 모델 파일을 로딩하자 217
테크닉 77 신규 데이터를 예측하자 218
테크닉 78 예측 결과를 히트맵으로 그리자 220
테크닉 79 실적 데이터를 만들자 222
테크닉 80 현장용 보고서를 만들어 출력하자 223

CHAPTER 09 소규모 머신러닝 시스템을 만들기 위한 테크닉 10 226
테크닉 81 폴더를 만들고 초기 변수를 정의하자 227
테크닉 82 신규 데이터를 로딩하고 매장별 데이터를 만들자 231
테크닉 83 월별 매장 데이터를 업데이트하자 235
테크닉 84 머신러닝용 데이터를 만들고 업데이트하자 236
테크닉 85 머신러닝 모델용 사전 데이터를 가공하자 239
테크닉 86 머신러닝 모델을 구현하고 평가하자 240
테크닉 87 신규 데이터 예측을 위한 밑준비를 하자 244
테크닉 88 신규 데이터를 예측하자 245
테크닉 89 현장용 보고서를 만들고 출력하자 246
테크닉 90 머신러닝 모델의 정밀도 추이를 시각화하자 249

CHAPTER 10 머신러닝 시스템 대시보드를 만들기 위한 테크닉 10 252
테크닉 91 단일 데이터를 로딩하자 253
테크닉 92 업데이트 데이터를 로딩해 매장별 데이터를 만들자 255
테크닉 93 머신러닝 모델의 중요 변수 데이터를 로딩하고 결합하자 256
테크닉 94 머신러닝 모델의 예측 결과를 로딩하고 결합하자 257
테크닉 95 머신러닝 모델용 사전 데이터를 가공하자 259
테크닉 96 매장 분석용 대시보드를 만들자 261
테크닉 97 머신러닝 모델의 정밀도 평가 대시보드를 만들자 264
테크닉 98 머신러닝 모델의 혼동 행렬 대시보드를 만들자 266
테크닉 99 머신러닝 모델의 변수 중요도 분석 대시보드를 만들자 269
테크닉 100 머신러닝 모델의 예측 결과를 시각화해서 검증하자 272

북카드

1/10

Klover 리뷰 (0)

북로그 리뷰 (2) 전체보기 쓰러가기

북로그 리뷰는 본인 인증 후 작성 가능합니다.
책이나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 내용은 비공개 처리 될 수 있습니다.
※ 북로그 리뷰 리워드 제공 2021. 4. 1 종료
  • 데이터는 지금도 모으고 있습니다. 비즈니스의 성과와 실적을 판단하는 요인으로 데이터가 활용됩니다. 데이터 관련 입문 서적은 많이 나와 있는데요. 실무 관련 서적은 찾아보지 못하셨을 것으로 생각됩니다. 실무 관련 서적을 추천해 드리려고 합니다. 소개해 드릴 책은 ‘파이썬 머신러닝 실무 테크닉 100’입니다. 이 책은 ‘파이썬 데이터분석 실무 테크닉 100’을 읽으신 분이나 입문 지식이 있는 분들에게 추천합니다. 입문자나, 읽지... 더보기
  • 데이터 분석과 관련된 작은 스킬들을 블록식으로 조립하여 MVP 방식에 적합한  소규모 머신러닝 시스템 을 구축하는 과정을 담은 책으로 PC 한 대만으로도 소개한 시스템의 구축이 가능하다. 책은 크게 2개의 파트로 나뉜다. 먼저 1부에서는 데이터 분석 시스템을 완성한 후, 2부에서는 1부의 구조화된 시스템에 모델을 결합하여 머신러닝 시스템으로 업그레이드 하는 과정을 거친다. 대규모의 투자를 감행하여 사내에 AI 시스템을 구축하는 것은 사업이 실패할 경우 감당해야 하는 리스크가 크다. ... 더보기

문장수집 (0) 문장수집 쓰기 나의 독서기록 보기
※구매 후 문장수집 작성 시, 리워드를 제공합니다. 안내

교환/반품/품절안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품/품절안내
반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
[1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
    또는 고객센터 (1544-1900)
반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유
  • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
  • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
  • 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
  • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
  • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
    해당되는 경우
(1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①서양도서-판매정가의 12%, ②일본도서-판매정가의 7%를 적용)
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
이메일과 문자로 안내드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
  • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
    소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
  • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
    소비자 보호에 관한 법률에 따라 처리함

이 책의 원서/번역서

안내
바로가기
  • 우측 확장형 배너 2
  • 우측 확장형 배너 2
최근 본 상품