본문내용 바로가기
MD의선택 무료배송 이벤트 사은품 소득공제

머신러닝 도감 그림으로 공부하는 머신러닝 알고리즘 17

I♥A.I.(아이러브 인공지능) 21
아키바 신야 , 스기야마 아세이 , 데라다 마나부 지음 | 이중민 옮김 | 제이펍 | 2019년 12월 19일 출간
클로버 리뷰쓰기
  • 정가 : 26,000원
    판매가 : 23,400 [10%↓ 2,600원 할인]
  • 통합포인트 :
    [기본적립] 1,300원 적립 [5% 적립] [추가적립] 5만원 이상 구매 시 2천원 추가적립 안내 [회원혜택] 실버등급 이상, 3만원 이상 구매 시 2~4% 추가적립 안내
  • 추가혜택 : 포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 배송일정 : 서울특별시 종로구 세종대로 기준 지역변경
    당일배송 지금 주문하면 오늘(28일,수) 도착 예정 배송일정 안내
  • 바로드림 : 인터넷으로 주문하고 매장에서 직접 수령 안내 바로드림 혜택
    휴일에는 바로드림 픽업으로 더 빨리 받아 보세요. 바로드림 혜택받고 이용하기

이 책의 이벤트 해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.

  • 취업/수험서, 컴퓨터/IT 분야 도서 3만원 이상 구매 시 샤코..
    2020.10.14 ~ 2020.11.30
  • 인공지능 계보도 특대형 패브릭 포스터 사은품
    2020.08.24 ~ 2020.10.31
  • 세상에! 이런 도감도 있었는감?
    2019.12.11 ~ 2021.12.31
  • 제이펍의 도서를 한 눈에 살펴보세요
    2017.11.23 ~ 2020.12.31
  • 책을 통해 성장해나가는 개발자를 응원합니다.
    2017.06.22 ~ 2025.07.31
  • MANNING, O'REILLY, PACKT, WILE..
    2016.03.07 ~ 2021.12.31
상품상세정보
ISBN 9791188621842(118862184X)
쪽수 260쪽
크기 188 * 245 * 18 mm /604g 판형알림
원서명/저자명 機械學習圖鑑 見て試してわかる機械學習アルゴリズムの仕組み/加藤公一

책소개

이 책이 속한 분야

알고리즘 중심의 머신러닝을 배우고 싶은 분에게 추천합니다!
복잡한 머신러닝 알고리즘을 풍부한 컬러 그림으로 배웁니다!

이 책은 복잡한 머신러닝 알고리즘을 그림과 함께 하나하나 살펴보는 입문서입니다. 전문가가 아닌 사람도 머신러닝을 이해할 수 있도록 지도 학습과 비지도 학습에 해당하는 17가지 알고리즘을 설명합니다. 또한, 사이킷런 기반의 파이썬 예제 코드를 구글 콜랩 등에서 바로 실행하며 읽을 수 있습니다.

[이 책의 특징]
. 복잡한 머신러닝 알고리즘 구조를 한 권으로 배운다
. 컬러 그림을 풍부하게 수록하였다
. 알고리즘마다 사이킷런을 사용한 코드를 제공하므로 보면서 직접 실행할 수 있다
. 구조뿐만 아니라 실제 사용법과 주의점을 알 수 있다

상세이미지

머신러닝 도감(I♥A.I.(아이러브 인공지능) 21) 도서 상세이미지

목차

CHAPTER 1 머신러닝 기초 1
1.1 머신러닝 소개 3
머신러닝 3
머신러닝의 유형 4
머신러닝의 활용 10
1.2 머신러닝 준비하기 11
데이터의 중요성 11
지도 학습(분류)의 예 14
구현 방법 17
비지도 학습의 예 19
시각화 23
그래프의 종류와 표현 방법: matplotlib을 이용한 그래프 출력 29
판다스를 이용해 데이터를 이해하고 다루기 38
마치며 45

CHAPTER 2 지도 학습 47
01 선형회귀 49
기본 개념 49
알고리즘 50
더 나아가기 53
02 정규화 58
기본 개념 58
알고리즘 61
더 나아가기 64
03 로지스틱 회귀 67
기본 개념 67
알고리즘 69
더 나아가기 71
04 서포트 벡터 머신 74
기본 개념 74
알고리즘 75
더 나아가기 77
05 커널 기법을 적용한 서포트 벡터 머신 80
기본 개념 81
알고리즘 81
더 나아가기 83
06 나이브 베이즈 분류 86
기본 개념 86
알고리즘 89
더 나아가기 93
07 랜덤 포레스트 94
기본 개념 94
알고리즘 95
더 나아가기 99
08 신경망 101
기본 개념 101
알고리즘 104
더 나아가기 108
09 k-최근접 이웃 알고리즘(kNN) 110
기본 개념 110
알고리즘 112
더 나아가기 113

CHAPTER 3 비지도 학습 117
10 주성분 분석 119
기본 개념 119
알고리즘 121
더 나아가기 124
11 잠재 의미 분석 125
기본 개념 125
알고리즘 127
더 나아가기 131
12 음수 미포함 행렬 분해 132
기본 개념 132
알고리즘 134
더 나아가기 136
13 잠재 디리클레 할당 139
기본 개념 139
알고리즘 141
더 나아가기 143
14 k-평균 알고리즘 146
기본 개념 146
알고리즘 147
더 나아가기 149
15 가우시안 혼합 모델 151
기본 개념 151
알고리즘 152
더 나아가기 156
16 국소 선형 임베딩 157
기본 개념 157
알고리즘 158
더 나아가기 161
17 t-분포 확률적 임베딩 163
기본 개념 163
알고리즘 164
더 나아가기 168

CHAPTER 4 평가 방법과 여러 가지 데이터 처리 171
4.1 평가 방법 173
지도 학습의 평가 173
분류 문제의 평가 방법 174
회귀 문제의 평가 방법 183
평균제곱오차와 결정계수의 차이 188
다른 알고리즘을 이용할 때와 비교 188
하이퍼 파라미터 설정 190
모델의 과적합 191
과적합을 막는 방법 192
학습 데이터와 검정 데이터 나누기 193
교차 검증 196
하이퍼 파라미터 탐색하기 198
4.2 문서 데이터의 전처리 202
단어 빈도 수를 이용한 변환 202
TF-IDF를 이용한 변환 203
머신러닝 모델에 적용 204
4.3 이미지 데이터 변환하기 207
픽셀 밝기 값 활용하기 207
변환한 벡터 데이터로 머신러닝 모델 만들기 209

CHAPTER 5 파이썬 개발 환경 211
5.1 파이썬 3 설치 213
윈도우 10 213
macOS 214
리눅스 215
아나콘다를 윈도우 10에 설치 216
5.2 가상 환경 218
표준 개발 환경에서 가상 환경 설정하기 218
아나콘다 220
5.3 외부 라이브러리 설치 221
외부 라이브러리 221
외부 라이브러리 설치 221

참고문헌 223

APPENDIX 부록 225
읽으면 도움 되는 수학 개념 몇 가지 226
이 책의 주요 용어 230

찾아보기 237

책 속으로

머신러닝은 학습 대상에 따라 다양한 알고리즘 중 적절한 것을 선택해 사용합니다. 이 책은 여러분이 적절한 머신러닝 알고리즘을 선택하도록 돕는다는 목적으로 썼습니다. 이 책을 읽은 후에는 실제로 머신러닝을 수행할 때 필요한 머신러닝 알고리즘 각각의 특성을 이해할 것입니다.
_4페이지

모델을 구현하고 학습과 예측을 진행했으므로 pred 변수에 저장된 데이터를 어떻게 클러스터링했는지 확인하겠습니다. 여기에서는 데이터를 시각화해 클러스터링한 결과를 확인합니다. 다음 샘플 코드를 실행하면 데이터를 시각화한 그래프를 출력할 수 있습니다... 더보기

출판사 서평

[이 책의 대상 독자]
. 머신러닝에 흥미를 느껴 공부를 시작한 분
. 좀 더 다양한 머신러닝 알고리즘을 알고 싶은 분
. 수식이 부담스러워서 머신러닝 관련 책을 읽기 어려워하는 분
. 문제에 따라 적절한 머신러닝 알고리즘을 선택하고 싶은 분

[책에서 소개하는 알고리즘 17]
01 선형 회귀
02 정규화
03 로지스틱 회귀
04 서포트 벡터 머신
05 서포트 벡터 머신(커널 기법)
06 나이브 베이즈 분류
07 랜덤 포레스트
08 신경망
09 kNN(k-최근접 이웃 알고리즘)
10 PCA(주성분 분석)... 더보기

Klover 리뷰 (0)

북로그 리뷰 (0) 쓰러가기

도서 구매 후 리뷰를 작성하시면
결제 90일 이내 300원, 발송 후 5일 이내 400원, 이 상품의 첫 리뷰 500원의 포인트를 드립니다.

포인트는 작성 후 다음 날 적립되며, 도서 발송 전 작성 시에는 발송 후 익일에 적립됩니다.
북로그 리뷰는 본인인증을 거친 회원만 작성 가능합니다.
(※ 외서/eBook/음반/DVD/GIFT 및 잡지 상품 제외) 안내
  • 해당도서의 리뷰가 없습니다.

문장수집 (0) 문장수집 쓰기 나의 독서기록 보기
※구매도서의 문장수집을 기록하면 통합포인트 적립 안내

교환/반품/품절안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품/품절안내
반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
[1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
    또는 고객센터 (1544-1900)
반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유
  • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
  • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
  • 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
  • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
  • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
    해당되는 경우
(1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①서양도서-판매정가의 12%, ②일본도서-판매정가의 7%를 적용)
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
이메일과 문자로 안내드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
  • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
    소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
  • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
    소비자 보호에 관한 법률에 따라 처리함

이 책의 원서

안내

바로가기

  • 우측 확장형 배너 2
  • 우측 확장형 배너 2

최근 본 상품