본문내용 바로가기
MD의선택 무료배송 사은품 소득공제

구글 BERT의 정석 인공지능, 자연어 처리를 위한 BERT의 모든 것

수다르산 라비찬디란 지음 | 전희원 , 정승환 , 김형준 옮김 | 한빛미디어 | 2021년 11월 03일 출간
클로버 리뷰쓰기

이 책의 다른 상품 정보

  • 정가 : 34,000원
    판매가 : 30,600 [10%↓ 3,400원 할인]
  • 혜택 :
    [기본적립] 1700원 적립 [5% 적립] [추가적립] 5만원 이상 구매 시 2,000원 추가적립 안내 [회원혜택] 회원 등급 별, 3만원 이상 구매 시 2~4% 추가적립 안내 [리뷰적립] 리뷰 작성 시 e교환권 최대 300원 추가적립 안내
  • 추가혜택 : 포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 배송일정 : 서울특별시 종로구 세종대로 기준 지역변경
    당일배송 지금 주문하면 오늘(30일,화) 도착 예정 배송일정 안내
  • 바로드림 : 인터넷으로 주문하고 매장에서 직접 수령 안내 바로드림 혜택
    휴일에는 바로드림 픽업으로 더 빨리 받아 보세요. 바로드림 혜택받고 이용하기

이 책의 이벤트

해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.
  • 2021 올해의 IT 책 투표하고 e-교환권 받으세요!(선착순 ..
    2021.11.22 ~ 2021.12.03
  • 컴퓨터/IT 도서 2만원 이상 구매 시 개발자 매거진 사은품 선..
    2021.11.11 ~ 2021.12.31
  • 2022 캘린더 수록한 IT독자를 위한 readIT 노트 사은품
    2021.10.14 ~ 2021.12.31
상품상세정보
ISBN 9791162244852(1162244852)
쪽수 368쪽
크기 184 * 234 * 22 mm /818g 판형알림

책소개

이 책이 속한 분야

이 책의 주제어

인간보다 언어를 더 잘 이해하고 구현하는 고성능 AI 언어 모델 BERT
이 책은 자연어 응용 분야에서 상당한 성능 향상을 이뤄 주목받고 있는 BERT 모델을 기초부터 다양한 변형 모델, 응용 사례까지 한 권으로 담은 실무 지침서다. 가장 먼저 사전 학습을 개선하여 성능을 향상하는 ALBERT, BART, ELECTRA, SpanBERT, RoBERTa, VideoBERT와 같은 BERT 변형 모델을 간단한 언어로 잘 풀어서 친절하게 설명한다. 다음으로 BioBERT 및 ClinicalBERT와 같은 특정 도메인에 해당하는 BERT 모델을 배우고 BERT의 재미있는 변형 모델인 VideoBERT도 살펴본다. 특별히, 본문 맨 뒤에는 한국어에 잘 동작하는 한국어 언어 모델 KoBERT, KoGPT2, KoBART를 추가 집필하여 붙였다. 이 책을 따라 모든 학습을 마치고 나면 BERT와 변형 모델을 활용해 여러 자연어 처리 태스크를 수월하게 처리할 수 있을 것이다.

상세이미지

구글 BERT의 정석 도서 상세이미지

목차

[PART I BERT 시작하기]

CHAPTER 1 트랜스포머 입문
1.1 트랜스포머 소개
1.2 트랜스포머의 인코더 이해하기
1.3 트랜스포머 디코더 이해하기
1.4 인코더와 디코더 결합
1.5 트랜스포머 학습
1.6 마치며
1.7 연습 문제
1.8 보충 자료

CHAPTER 2 BERT 이해하기
2.1 BERT 기본 개념
2.2 BERT의 동작 방식
2.3 BERT의 구조
2.4 BERT 사전 학습
2.5 하위 단위 토큰화 알고리즘
2.6 마치며
2.7 연습 문제
2.8 보충 자료

CHAPTER 3 BERT 활용하기
3.1 사전 학습된 BERT 모델 탐색
3.2 사전 학습된 BERT에서 임베딩을 추출하는 방법
3.3 BERT의 모든 인코더 레이어에서 임베딩을 추출하는 방법
3.4 다운스트림 태스크를 위한 BERT 파인 튜닝 방법
3.5 마치며
3.6 연습 문제
3.7 보충 자료

[PART II BERT 파생 모델]

CHAPTER 4 B ERT의 파생 모델 I: ALBERT, RoBERTa, ELECTRA, SpanBERT
4.1 ALBERT
4.2 ALBERT에서 임베딩 추출
4.3 RoBERTa
4.4 ELECTRA 이해하기
4.5 SpanBERT로 스팬 예측
4.6 마치며
4.7 연습 문제
4.8 보충 자료

CHAPTER 5 BERT 파생 모델 II: 지식 증류 기반
5.1 지식 증류 소개
5.2 DistilBERT: BERT의 지식 증류 버전
5.3 TinyBERT 소개
5.4 BERT에서 신경망으로 지식 전달
5.5 마치며
5.6 연습 문제
5.7 보충 자료

[PART III BERT 적용하기]

CHAPTER 6 텍스트 요약을 위한 BERTSUM 탐색
6.1 텍스트 요약
6.2 텍스트 요약에 맞춘 BERT 파인 튜닝
6.3 ROUGE 평가 지표 이해하기
6.4 BERTSUM 모델의 성능
6.5 BERTSUM 모델 학습
6.6 마치며
6.7 연습 문제
6.8 보충 자료

CHAPTER 7 다른 언어에 BERT 적용하기
7.1 M-BERT 이해하기
7.2 M-BERT는 다국어 표현이 어떻게 가능한가?
7.3 XLM
7.4 XLM-R 이해하기
7.5 언어별 BERT
7.6 마치며
7.7 연습 문제
7.8 보충 자료

CHAPTER 8 sentence-BERT 및 domain-BERT 살펴보기
8.1 sentence-BERT로 문장 표현 배우기
8.2 sentence-transformers 라이브러리 탐색
8.3 지식 증류를 이용한 다국어 임베딩 학습
8.4 domain-BERT
8.5 마치며
8.6 연습 문제
8.7 보충 자료

CHAPTER 9 VideoBERT, BART
9.1 VideoBERT로 언어 및 비디오 표현 학습
9.2 BART 이해하기
9.3 BERT 라이브러리 탐색
9.4 마치며
9.5 연습 문제
9.6 보충 자료

CHAPTER 10 한국어 언어 모델: KoBERT, KoGPT2, KoBART
10.1 KoBERT
10.2 KoGPT2
10.3 KoBART

출판사 서평

인간의 인지 능력을 능가하는 구글 AI 모델, BERT

자연어 처리에서 가장 화두가 되는 BERT는 2019년 11월에 구글이 공개한 AI 언어 모델입니다. 일부 성능 평가에서 인간을 능가하며 자연어 처리 발전에 큰 영향을 끼쳤습니다. 많은 사람이 자연어 처리 분야만큼은 AI를 적용하는 건 쉽지 않다고 생각했습니다. 하지만 BERT의 등장으로 그 가능성을 입증했으며, 자연어 처리 기술의 폭발적인 발전을 이루어냈습니다. 언어를 활용한 서비스를 개발하는 기관에서는 이미 BERT를 사용하고 있습니다. 문장 내 어절을 한 글자씩 나눈 다... 더보기

Klover 리뷰 (0)

북로그 리뷰 (2) 전체보기 쓰러가기

북로그 리뷰는 본인 인증 후 작성 가능합니다.
책이나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 내용은 비공개 처리 될 수 있습니다.
※ 북로그 리뷰 리워드 제공 2021. 4. 1 종료
  • 지난 5월 네이버의 검색 랭킹 알고리즘에 작은 변화가 있었습니다. 바로 사용자의 검색 의도를 파악하여 의도에 맞는 검색 결과를 보여준다는 것인데요, 여기에 바로 BERT가 활용됩니다. 기존의 자연어 처리와는 달리 BERT는 앞뒤 문맥을 활용하여 단어의 의미를 파악하기에 정확한 번역 결과를 보여줄 수 있습니다.  책에서는 이 내용을 설명하기 위해 '그는 파이썬에게 물렸다' 와 '내가 좋아하는 프로그래밍 언어는 파이썬이다'라는 두 문장을 소개합니다. BERT는 문맥상 의미를 이해하기 위해 각 단어를 ... 더보기
  • 이번 리뷰 도서는 그동안 봤던 인공 지능 책들과는 약간 다른 분야를 다룬다. https://www.hanbit.co.kr/store/books/look.php?p_code=B2201215526 대부분 인공 지능이나 딥러닝에서는 이미지 처리를 주로 다루는데 이 책은 자연어 처리를 다루며, 이미지 처리 보다도 더 어렵게만 느껴진다. 이 책을 보는 내내 이해가 안가는 부분도 많고 내용이 어려워서 "현타" 내지는 "허탈감" 에 빠질수도 있다는 점 잊지 말자. ... 더보기

문장수집 (0) 문장수집 쓰기 나의 독서기록 보기
※구매 후 문장수집 작성 시, 리워드를 제공합니다. 안내

교환/반품/품절안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품/품절안내
반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
[1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
    또는 고객센터 (1544-1900)
반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유
  • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
  • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
  • 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
  • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
  • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
    해당되는 경우
(1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①서양도서-판매정가의 12%, ②일본도서-판매정가의 7%를 적용)
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
이메일과 문자로 안내드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
  • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
    소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
  • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
    소비자 보호에 관한 법률에 따라 처리함
바로가기
  • 우측 확장형 배너 2
  • 우측 확장형 배너 2
최근 본 상품