본문내용 바로가기
MD의선택 무료배송 이벤트 사은품 소득공제

고객 리텐션의 전략 데이터를 통해 고객 이탈을 막아라

데이터 과학
칼 골드 지음 | 정현지 옮김 | 에이콘출판 | 2022년 06월 30일 출간
클로버 리뷰쓰기
  • 정가 : 40,000원
    판매가 : 36,000 [10%↓ 4,000원 할인]
  • 혜택 :
    [기본적립] 2000원 적립 [5% 적립] [추가적립] 5만원 이상 구매 시 2,000원 추가적립 안내 [회원혜택] 회원 등급 별, 3만원 이상 구매 시 2~4% 추가적립 안내 [리뷰적립] 리뷰 작성 시 e교환권 최대 300원 추가적립 안내
  • 추가혜택 : 포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 도서상태 : 인터넷주문불가

이 책의 이벤트

해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.
  • 컴퓨터/IT분야 2만원 이상 구매 시 개발자 매거진 <리드..
    2022.08.13 ~ 2022.10.31
  • 상반기 베스트/추천도서 확인하고 머그&노트 사은품도!
    2022.06.24 ~ 2022.09.30
  • 비전공자도 혼자 공부할 수 있는 친절한 컴퓨터 공학 책을 추천드..
    2022.03.17 ~ 2023.12.31
  • 새로운 파이썬 책을 발견해보세요! 전체 목록 다운로드 제공!
    2016.08.11 ~ 2023.12.31
  • MANNING, O'REILLY, PACKT, WILE..
    2016.03.07 ~ 2022.12.31
상품상세정보
ISBN 9791161756578(1161756574)
쪽수 634쪽
크기 187 * 235 * 38 mm /1275g 판형알림
이 책의 원서/번역서 Fighting Churn with Data / Carl Gold

책소개

이 책이 속한 분야

이 책의 주제어

반복적인 수익과 판매에 의존하는 모든 비즈니스에서 고객의 활동성과 참여를 유지하는 것은 매우 중요하다. 고객의 이탈은 비용이 많이 들고, 회사에 좌절감을 줄 수 있다. 이 책에서 설명하는 기술을 적용함으로써 이탈의 경고 신호를 식별하고 고객이 떠나기 전에 고객을 잡는 방법을 배울 수 있다. 실제 사용 사례가 포함된 이 책에서는 로우 데이터를 측정 가능한 행동 메트릭으로 변환하고, 고객 수명 가치를 계산하고, 인구 통계 데이터를 사용하여 이탈 예측 기능을 개선하는 방법을 설명한다. 주오라(Zuora)의 최고 데이터 과학자인 저자의 방법을 따르면 높은 고객 유지율을 얻을 수 있을 것이다.

작가의 말

고객 이탈(취소)과 참여는 온라인 제품 또는 서비스를 제공하는 모든 회사의 사활이 걸린 문제다. 데이터 과학 및 분석의 광범위한 채택과 맞물려, 데이터 전문가들을 불러 이동 감소 노력을 돕는 것이 표준이다. 그러나 이탈에 대한 이해는 다른 데이터 애플리케이션에서 흔히 볼 수 없는 많은 도전과 함정을 가지고 있으며, 지금까지 데이터 전문가(또는 학생)가 이 분야를 시작할 때 도움이 될 만한 책은 없었다.
지난 6년 동안, 수십 개의 제품과 서비스를 통해 이탈 관련 작업을 해왔고 주오라라는 회사에서 최고 데이터 과학자로 일했다. 주오라는 구독 기업들이 제품, 운영, 재무 등을 관리할 수 있는 플랫폼을 제공한다. 이 책 곳곳에 나오는 사례 연구에서 주오라의 일부 고객을 볼 수 있다.
나는 그 기간 동안 다른 방법으로 이탈을 분석하고, 그 결과를 이탈과 싸우고 있는 회사 사람들에게 피드백하는 실험을 했다. 사실은 초기의 몇 년 동안 많은 실수를 저질렀다. 다른 사람들은 그와 같은 실수를 하지 않았으면 해서 이 책을 쓰자고 결심했다.
데이터 담당자의 관점에서 작성했다. 누구든지 이 책을 통해 원시 데이터를 가지고 이탈과의 싸움에 도움이 되는 유용한 발견을 할 것으로 기대한다. 이 책을 보는 사람은 데이터 과학자, 데이터 분석가 또는 머신러닝 엔지니어나 데이터와 코드에 대해 조금 알아서 분석을 요청을 받은 사람일 수도 있다. 이 책은 파이썬과 SQL을 사용하기 때문에 데이터를 다루는 사람이 코드를 아는 사람이라고 가정한다. 나는 데이터 표시와 공유를 위한 스프레드시트를 선호하지만, 스프레드시트에서 이탈 싸움의 주요 분석 작업을 시도하지 않는 것을 추천한다. 많은 작업은 순차적으로 수행돼야 하며, 이러한 작업 중 일부는 중요하지 않다. 또 이 과정을 여러 번 반복할 필요가 있다. 워크플로가 짧은 프로그램에는 적합하지만 스프레드시트와 그래픽 도구로 진행하기는 어렵다.
데이터를 다루는 사람을 위한 책이기 때문에 제품과 서비스가 취할 수 있는 이탈 감소 조치에 대해서는 자세히 설명하지 않는다. 이 책에는 이메일과 전화 캠페인 실행, 이탈 방지 플레이북 작성, 가격 및 패키징 설계와 같은 작업을 수행하는 방법에 대한 자세한 내용은 설명하지 않는다. 대신 데이터 중심 접근 방식을 통해 고객 이탈에 대한 전투 계획을 수립할 수 있다는 점에서 전략적이다. 즉, 어떤 고객 이탈 감소 활동을 추진할 것인지, 어떤 고객을 대상으로 할 것인지, 어떤 종류의 결과를 예상할 것인지를 선택하는 것이다. 그래도 데이터 사용의 맥락을 이해하는 데 필요한 만큼 높은 수준에서 다양한 이탈 감소 전략을 소개한다.

목차

1부. 무기고 쌓기

1장. 이탈의 세계
1.1 이 책을 읽어야 하는 이유
1.1.1 전형적인 이탈 시나리오
1.1.2 이 책의 주제
1.2 이탈과의 싸움
1.2.1 이탈을 줄이는 개입
1.2.2 이탈을 다루기 어려운 이유
1.2.3 뛰어난 고객 지표: 고객 이탈 방지를 위한 무기들
1.3 이 책의 차별점
1.3.1 실용적이고 심도 있는 내용
1.3.2 모의 사례 연구
1.4 반복되는 사용자 상호 작용이 있는 제품
1.4.1 유료 소비자 상품
1.4.2 사업 대 사업 서비스
1.4.3 광고 지원 미디어 및 앱
1.4.4 소비자 피드 구독료
1.4.5 프리미엄 비즈니스 모델
1.4.6 앱 내 구매 모델
1.5 비가입자 이탈 시나리오
1.5.1 이탈로서 비활성
1.5.2 무료 시험 전환
1.5.3 업셀링/다운셀링
1.5.4 예/아니오 고객 예측
1.5.5 고객 활동 예측
1.5.6 이탈과 같지 않은 사용자 사례
1.6 고객 행동 데이터
1.6.1 공통 제품 분류의 고객 이벤트
1.6.2 가장 중요한 이벤트
1.7 이탈과 싸우는 사례 분석
1.7.1 클립폴리오
1.7.2 브로들리
1.7.3 벌서처
1.7.4 소셜 네트워크 시뮬레이션
1.8 훌륭한 고객 지표에 대한 사례 연구
1.8.1 활용도
1.8.2 성공률
1.8.3 단가
요약


2장. 이탈 측정
2.1 이탈률의 정의
2.1.1 이탈률과 점유율 계산하기
2.1.2 이탈률과 점유율 사이의 관계
2.2 구독 데이터베이스
2.3 기반 이탈 계산: 순점유
2.3.1 순보유 계산
2.3.2 SQL 순보유 계산
2.3.3 순보유 해석
2.4 표준 계정 기반 이탈
2.4.1 표준 이탈률 정의
2.4.2 이탈 계산을 위한 외부 조인
2.4.3 SQL을 이용한 표준 이탈 계산
2.4.4 표준 이탈률을 사용하는 경우
2.5 비구독 제품의 이벤트 기반 활동 이탈
2.5.1 활성 계정과 이벤트 이탈의 정의
2.5.2 SQL을 사용한 활동 이탈 계산
2.6 고급 이탈: 월별 반복 수익(MRR) 이탈
2.6.1 MRR 이탈 정의와 계산
2.6.2 SQL을 사용한 MRR 이탈 계산
2.6.3 MRR 이탈 대 계정 이탈 대 순보유 이탈
2.7 이탈률 측정 전환
2.7.1 생존자 분석(고급)
2.7.2 이탈률 변환
2.7.3 SQL의 이탈 측정 윈도우 변환
2.7.4 이탈 측정 윈도우 선택
2.7.5 계절성과 이탈률
요약


3장. 고객 측정하기
3.1 이벤트에서 메트릭으로
3.2 이벤트 데이터 웨어하우스 스키마
3.3 1회 주기 이벤트 계수
3.4 메트릭 기간 정의의 세부 사항
3.4.1 주간 행동 주기
3.4.2 메트릭 측정에 대한 타임 스탬프
3.5 다른 시점에서 측정
3.5.1 겹치는 측정 윈도우
3.5.2 타이밍 메트릭 측정
3.5.3 측정 메트릭 저장
3.5.4 시뮬레이션 예제를 위한 측정 메트릭 저장
3.6 이벤트 속성의 총계 및 평균 측정
3.7 측정 메트릭 품질 보증
3.7.1 시간 경과에 따른 측정 메트릭 변화 테스트
3.7.2 측정 메트릭 품질 보증(QA) 사례 연구
3.7.3 메트릭을 수신하는 계정 수 확인
3.8 이벤트 QA
3.8.1 시간 경과에 따른 이벤트 변화 확인
3.8.2 계정별 이벤트 확인
3.9 행동 측정 시 측정 주기 선정
3.10 계정 테뉴어 측정
3.10.1 계정 테뉴어 정의
3.10.2 계정 테뉴어에 대한 재귀 테이블 표현식
3.10.3 계정 테뉴어 SQL 프로그램
3.11 MRR 및 기타 가입 메트릭 측정
3.11.1 MRR을 메트릭으로 계산
3.11.2 특정 금액에 대한 구독
3.11.3 메트릭으로 구독 단위 수량 계산
3.11.4 메트릭으로 청구 기간 계산
요약


4장. 갱신과 이탈 관찰
4.1 데이터 세트 소개
4.2 고객 관찰 방법
4.2.1 관측 리드 타임
4.2.2 갱신 및 이탈 순서 관찰
4.2.3 구독에서 데이터 세트 생성 개요
4.3 구독에서 활성 기간 식별
4.3.1 활성 기간
4.3.2 활성 기간 저장 스키마
4.3.3 진행 중인 활성 기간 찾기
4.3.4 이탈로 끝나는 활성 기간 찾기
4.4 비구독 제품의 활성 기간 파악
4.4.1 활성 기간 정의
4.4.2 이벤트에서 데이터 세트 형성 프로세스
4.4.3 활성 주 계산을 위한 SQL
4.5 관찰 일자 선정
4.5.1 이탈 및 비이탈 관찰의 균형
4.5.2 관찰 일자 선택 알고리즘
4.5.3 관찰 날짜 SQL 프로그램
4.6 이탈 데이터 세트 내보내기
4.6.1 데이터 세트 생성 SQL 프로그램
4.7 분할을 위한 현재 고객 내보내기
4.7.1 활성 계정 및 메트릭 선택
4.7.2 메트릭으로 고객 분할
요약


2부. 전쟁 중

5장. 메트릭을 통한 이탈 및 행동 이해
5.1 메트릭 코호트 분석
5.1.1 코호트 분석 이면의 아이디어
5.1.2 파이썬을 사용한 코호트 분석
5.1.3 제품 사용 코호트
5.1.4 계정 테뉴어 코호트
5.1.5 청구 기간의 코호트 분석
5.1.6 최소 코호트 크기
5.1.7 유의미한 코호트 차이와 무의미한 코호트 차이
5.1.8 고객 메트릭이 대부분 0인 메트릭 코호트
5.1.9 인과 관계: 메트릭이 이탈을 일으키고 있는가?
5.2 고객 행동 요약
5.2.1 메트릭 분포 이해
5.2.2 파이썬에서 데이터 세트 요약 통계 계산
5.2.3 희귀 메트릭 선별
5.2.4 데이터 품질 보증에 비즈니스 참여
5.3 메트릭 점수 매기기
5.3.1 메트릭 점수 이면의 아이디어
5.3.2 메트릭 점수 알고리즘
5.3.3 파이썬에서 메트릭 점수 계산
5.3.4 점수가 매겨진 메트릭으로 코호트 분석
5.3.5 월간 반복 수입의 코호트 분석
5.4 원치 않거나 무효한 관찰 제거
5.4.1 이탈 분석에서 비구매 고객 제거
5.4.2 파이썬에서 메트릭 임곗값 기반 관찰 제거
5.4.3 희귀 메트릭 분석에서 영점 측정 제거
5.4.4 해제 행동: 이탈 증가와 관련된 메트릭
5.5 코호트 분석을 이용한 고객 세분화
5.5.1 세분화 프로세스
5.5.2 세그먼트 기준 선택
요약


6장. 고객 행동 사이의 관계
6.1 행동 간 상관관계
6.1.1 두 메트릭 간의 상관관계
6.1.2 파이썬과의 상관관계 조사
6.1.3 상관 행렬을 사용한 메트릭 세트 간 상관관계 이해
6.1.4 사례 연구 상관 행렬
6.1.5 파이썬에서 상관 행렬 계산
6.2 행동 메트릭 그룹 평균화
6.2.1 관련 메트릭 점수를 평균내는 이유
6.2.2 가중치 행렬을 사용한 평균 점수(적재 행렬)
6.2.3 적재 행렬의 사례 연구
6.2.4 파이썬에서 적재 행렬 적용
6.2.5 메트릭 그룹 평균 점수에 대한 이탈 코호트 분석
6.3 상관 메트릭 그룹 검색
6.3.1 상관관계를 클러스터링하여 메트릭 그룹화
6.3.2 파이썬에서 상관관계 클러스터링
6.3.3 점수 평균을 점수로 만드는 적재 행렬 가중치
6.3.4 메트릭 그룹 및 그룹화된 코호트 분석 리스팅 실행
6.3.5 클러스터링을 위한 상관 임곗값 선택
6.4 비즈니스 담당자에게 상관된 메트릭 그룹 설명
요약


7장. 고급 메트릭으로 고객 세분화
7.1 비율 메트릭
7.1.1 비율 메트릭 사용 시기와 이유
7.1.2 비율 메트릭 계산 방법
7.1.3 비율 메트릭 사례 연구 예제
7.1.4 시뮬레이션된 소셜 네트워크에 대한 추가 비율 메트릭
7.2 전체 메트릭의 백분율
7.2.1 총 메트릭의 백분율 계산
7.2.2 두 개의 메트릭을 사용한 총 메트릭 사례 연구 백분율
7.2.3 여러 메트릭을 사용한 총 메트릭 사례 연구 비율
7.3 변화 측정 메트릭
7.3.1 활동 수준의 변화 측정
7.3.2 극단 특이치가 있는 메트릭의 점수(팻테일)
7.3.3 마지막 활동 이후의 시간 측정
7.4 메트릭 기간 조정
7.4.1 더 긴 메트릭을 더 짧은 인용 기간으로 스케일링
7.4.2 신규 계정에 대한 메트릭 추정
7.5 사용자 메트릭
7.5.1 활성 사용자 측정
7.5.2 활성 사용자 메트릭
7.6 사용할 비율
7.6.1 비율을 사용하는 이유
7.6.2 어떤 비율을 사용해야 하는가
요약


3부. 특별한 무기와 전략

8장. 이탈 예측
8.1 모델을 이용한 이탈 예측
8.1.1 모델을 사용한 확률 예측
8.1.2 참여 및 유지가능성
8.1.3 참여와 고객 행동
8.1.4 오프셋이 관측된 이탈률과 S 곡선을 일치시킴
8.1.5 로지스틱 회귀 확률 계산
8.2 데이터 준비 검토
8.3 이탈 모델 피팅
8.3.1 로지스틱 회귀 분석 결과
8.3.2 로지스틱 회귀 분석 코드
8.3.3 로지스틱 회귀 분석 결과 설명
8.3.4 로지스틱 회귀 분석 사례 연구
8.3.5 보정 및 과거 이탈 확률
8.4 이탈 확률 예측
8.4.1 예측을 위한 현재 고객 데이터 세트 준비
8.4.2 분할을 위한 현재 고객 데이터 준비
8.4.3 저장된 모델을 이용한 예측
8.4.4 예측 사례 연구
8.4.5 예측 보정 및 예측 드리프트
8.5 이탈 예측의 함정
8.5.1 상관 메트릭
8.5.2 아웃라이어
8.6 고객 생애 가치
8.6.1 CLV의 의미
8.6.2 이탈에서 예상 고객 수명까지
8.6.3 CLV 공식
요약


9장. 예측 정확도와 머신러닝
9.1 이탈 예측의 정확도 측정
9.1.1 이탈에 표준 정확도 측정을 사용하지 않는 이유
9.1.2 AUC를 이용한 이탈 예측 정확도 측정
9.1.3 리프트를 이용한 이탈 예측 정확도 측정
9.2 과거 정확도 시뮬레이션: 백테스팅
9.21 백테스팅의 대상과 이유
9.22 백테스팅 코드
9.23 백테스팅 고려 사항 및 함정
9.3 회귀 제어 파라미터
9.3.1 회귀 가중치의 강도 및 수 제어
9.3.2 제어 파라미터를 사용한 회귀 분석
9.4 테스트로 회귀 파라미터 선택(교차 검증)
9.4.1 교차 검증
9.4.2 교차 검증 코드
9.4.3 회귀 교차 검증 사례 연구
9.5 머신러닝을 통한 이탈 위험 예측
9.5.1 XGBoost 학습 모델
9.5.2 XGBoost 교차 검증
9.5.3 XGBoost 정확도와 회귀 분석 비교
9.5.4 고급 및 기본 메트릭의 비교
9.6 머신러닝 예측으로 고객 세분화
요약


10장. 이탈 인구 통계 및 기업 통계
10.1 인구 통계 및 기업 통계 데이터 세트
10.1.1 인구 통계 및 기업 통계 데이터의 유형
10.1.2 소셜 네트워크 시뮬레이션을 위한 계정 데이터 모델
10.1.3 인구 통계 데이터 세트 SQL
10.2 인구 통계 카테고리와 기업 통계 카테고리가 있는 이탈 코호트
10.2.1 인구 통계 카테고리에 대한 이탈률 코호트
10.2.2 이탈률 신뢰 구간
10.2.3 인구 통계 코호트와 신뢰 구간 비교
10.3 인구 통계 카테고리 그룹화
10.3.1 매핑 사전으로 그룹 표시
10.3.2 그룹화된 카테고리가 포함된 코호트 분석
10.3.3 카테고리 그룹 설계
10.4 날짜 기반 및 수치 기반 인구 통계 이탈 분석
10.5 인구 통계 데이터를 이용한 이탈 예측
10.5.1 텍스트 필드를 더미 변수로 변환
10.5.2 카테고리형 더미 변수만으로 이탈 예측
10.5.3 더미 변수와 숫자 데이터 결합
10.5.4 인구 통계 및 메트릭이 결합된 이탈 예측
10.6 인구 통계 데이터로 현재 고객 세분화
요약


11장. 이탈과의 싸움 주도
11.1 이탈에 대한 자신만의 투쟁 계획 수립
11.1.1 데이터 처리 및 분석 체크리스트
11.1.2 비즈니스 체크리스트에 대한 커뮤니케이션
11.2 자신의 데이터에 대한 도서 목록 실행
11.2.1 이 책의 데이터 스키마에 데이터 로드
11.2.2 자신의 데이터에 대한 리스팅 실행
11.3 이 책의 리스팅을 다른 환경으로 이동하기
11.3.1 SQL 리스팅 이동
11.3.2 파이썬 목록 이동
11.4 더 많이 배우고 연락하기
11.4.1 저자의 블로그 사이트 및 소셜 미디어
11.4.2 이탈 벤치마크 정보의 출처
11.4.3 이탈에 대한 기타 정보 출처
11.4.4 이탈에 도움이 되는 제품
요약

추천사

티엔 추오(Tien Tzuo)(주오라(Zuora)의 창립자이자 최고 경영자(CEO))

주로 코딩과 데이터에 익숙한 기술지향적인 사람들을 위한 책이지만 명쾌하고 설득력이 있으며, 때로는 재밌다. 특히 첫 장은 성공적인 구독 기반 비즈니스를 운영하는 데 관심이 있는 모든 사람이 꼭 읽어야 한다. 여러분의 상사를 ... 더보기

출판사 서평

◈ 이 책에서 다루는 내용 ◈

◆ 이탈 측정 지표 산정
◆ 이탈을 예측하는 사용자 행동 확인
◆ 고객 세분화와 함께 이탈 감소 전술
◆ 타 사업장에 대한 이탈 분석 기법
◆ 정확한 이탈 예측을 위한 AI 활용

◈ 이 책의 대상 독자 ◈

주요 독자는 데이터 과학자, 데이터 분석가, 머신러닝 엔지니어다. 온라인 제품 또는 서비스를 위한 이탈 현상을 이해하고 극복해야 할 때 이 책이 도움될 것이다. 또한 컴퓨터 과학 및 데이터 과학 분야 학생이나 코딩하는 방법을 알고 있고 일반 회사에서 데이터 과학의 중요한 영역을 더 배우고 싶어... 더보기

Klover 리뷰 (0)

북로그 리뷰 (0) 쓰러가기

북로그 리뷰는 본인 인증 후 작성 가능합니다.
책이나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 내용은 비공개 처리 될 수 있습니다.
※ 북로그 리뷰 리워드 제공 2021. 4. 1 종료
※ 북로그 서비스 종료 예정 2022. 9 월 말 (8월 31일 북로그 글쓰기 종료)
※ 2022년 9월까지 포스팅 별 개인소장 가능, 2023년 9월까지 일괄 백업 서비스 제공 예정 자세히 보기

문장수집 (0) 문장수집 쓰기 나의 독서기록 보기
※구매 후 문장수집 작성 시, 리워드를 제공합니다. 안내

교환/반품/품절안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품/품절안내
반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
[1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
    또는 고객센터 (1544-1900)
반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유
  • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
  • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
  • 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
  • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
  • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
    해당되는 경우
(1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①서양도서-판매정가의 12%, ②일본도서-판매정가의 7%를 적용)
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
이메일과 문자로 안내드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
  • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
    소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
  • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
    소비자 보호에 관한 법률에 따라 처리함

이 책의 원서/번역서

안내
바로가기
  • 우측 확장형 배너 2
  • 우측 확장형 배너 2
최근 본 상품