본문내용 바로가기
MD의선택 무료배송 이벤트 경품 소득공제

자율 주행 자동차 만들기 자율 주행 소프트웨어 시스템의 원리와 구현 방법

리우 샤오샨 , 리 리윤, 탕 지에, 우 슈앙, 장 뤽 고디오 지음 | 남기혁, 김은도, 서영빈 옮김 | 에이콘출판 | 2019년 01월 02일 출간
  • 정가 : 30,000원
    판매가 : 27,000 [10%↓ 3,000원 할인]
  • 통합포인트 :
    [기본적립] 1,500원 적립 [5% 적립] 안내 [추가적립] 5만원 이상 구매 시 2천원 추가적립 [회원혜택] 우수회원 5만원 이상 구매 시 2~3% 추가적립
  • 추가혜택 : 카드/포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 배송일정 : 서울특별시 종로구 세종대로 기준 지역변경
    당일배송 지금 주문하면 오늘(22일,금) 도착 예정 배송일정 안내
  • 바로드림 : 인터넷으로 주문하고 매장에서 직접 수령 안내

이 책의 이벤트 해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.

  • IT분야 책 쓰기 관련 개발자 행사 '책노리'..
    2019.03.14 ~ 2019.03.29
  • 설문참여 시 매월 5명 추첨통해 선물을 드립니다.
    10. 14 ~ 12. 31
상품상세정보
ISBN 9791161752518(116175251X)
쪽수 268쪽
크기 188 * 235 * 17 mm /635g 판형알림
이 책의 원서/번역서 Creating Autonomous Vehicle Systems/Liu, Shaoshan

책소개

이 책이 속한 분야

컴퓨터 및 공학 배경지식을 갖춘 일반 독자를 대상으로 한 자율 주행 자동차에 관련된 기술을 전반적으로 소개하는 최초의 책이다. 자율 주행 자동차 시스템 개발하면서 얻은 저자의 실전 경험이 담겨 있다.

상세이미지

자율 주행 자동차 만들기 도서 상세이미지

저자소개

저자 : 리우 샤오샨

퍼셉트인(PerceptIn)의 의장이자 공동 창업자다. UC 어바인에서 학부 및 대학원을 마치고 2010년 컴퓨터 공학 박사 학위를 취득했다. 주 연구 분야는 컴퓨터 아키텍처, 빅데이터 플랫폼, 딥 러닝 인프라스트럭처, 로보틱스다. 리우 박사는 8년 이상의 업계 경력을 갖고 있으며, 퍼셉트인을 설립하기 전 바이두(Baidu) USA에 근무하면서 자율 주행 시스템 팀을 이끌었다. 바이두 USA에 근무하기 전에는 링크드인에서 빅데이터 플랫폼 업무를 수행했고, 마이크로소프트에서는 OS 커널 업무를 수행했으며, MSR(마이크로소프트 리서치)에서 재설정 컴퓨팅(Reconfigurable Computing)을, 프랑스의 INRIA에서 GPU 컴퓨팅을, 인텔 연구소/리서치에서는 런타임 시스템을, 브로드컴(Broadcom)에서는 하드웨어를 연구했다.

저자 : 리 리윤

현재 캘리포니아 서니베일에 있는 바이두 실리콘밸리 연구 센터에서 소프트웨어 아키텍트로 근무하고 있다. 바이두 자율 주행 팀의 초기 멤버로서, 바이두 자율 주행차를 위한 스마트 행위 결정, 모션 계획, 차량 제어를 비롯한 다양한 자율주행 기술을 개발하고 선도하고 있다. 바이두에 합류하기 전에는 현재 마이크로소프트에 인수된 링크드인(LinkedIn)의 선임 소프트웨어 엔지니어로 근무했다. 뉴욕대에서 컴퓨터 과학 박사 학위를 취득했으며, 주요 연구 분야는 응용 머신 러닝이다.

저자 : 탕 지에

현재 중국 광저우에 있는 SCUT(South China University of Technology)의 컴퓨터 과학 및 공학부 조교수로 근무하고 있다. SCUT에 부임하기 전에 UC 리버사이드와 클락슨 대학교에서 2013년 12월부터 2015년 8월까지 박사후 연구원으로 근무했다.
2006년 국방과학기술대학에서 컴퓨터 과학 학사를 취득하고, 2012년 베이징 이공대학에서 컴퓨터 과학 박사 학위를 취득했다. 2009년에서 2011년까지 UC 어바인의 PASCAL 랩에서 방문 연구원으로 근무했다.

저자 : 우 슈앙

이투(Yitu) 사에서 과학자로 근무하고 있다. 그 전에는 미국 캘리포니아 서니베일에 있는 바이두 AI 랩에서 선임 연구원으로, 바이두 USDC에서 선임 아키텍트로 근무했다. USC에서 물리학 박사 학위를 취득했고, UCLA에서 박사후 연구원으로 근무한 바 있다. 컴퓨터 및 생체 비전, 전산 광고와 음성 인식 분야의 응용 머신 러닝에 대해 연구했으며, NIPS와 ICML을 비롯한 여러 학회에 꾸준히 논문을 발표하고 있다.

저자 : 장 뤽 고디오

1976년 프랑스 파리에 있는 ESIEE에서 공학사를 취득하고, UCLA에서 1977년과 1982년에 석사와 박사 학위를 취득했다. 현재 UC 어바인의 전기공학 및 컴퓨터 과학과 교수로 근무하고 있다. 2002년 UCI에 부임하기 전에 USC에서 1982년까지 전기공학부 교수로 근무한 바 있다. 주요 연구 분야는 멀티스레드 아키텍처, 장애 대응(fault-tolerant) 멀티프로세서, 재설정 아키텍처 등이며, 지금까지 250편 이상의 저널 및 학회 논문을 발표한 바 있다. NSF, DoE, DARPA뿐만 아니라 다수의 산업체 지원으로 연구를 수행하고 있다. IEEE 컴퓨터 소사이어티에서 다양한 직책을 받아왔으며 2017년에는 회장으로 선출됐다.

역자 : 남기혁

고려대 컴퓨터학과에서 학부와 석사 과정을 마친 후 한국전자통신연구원에서 선임 연구원으로 재직하고 있으며, 현재 ㈜프리스티에서 네트워크 제어 및 검증 소프트웨어 개발 업무를 맡고 있다. 에이콘출판사에서 출간한 『GWT 구글 웹 툴킷』(2008), 『해킹 초보를 위한 USB 공격과 방어』(2011), 『자바 7의 새로운 기능』(2013), 『iOS 해킹과 보안 가이드』(2014), 『Neutron 오픈스택 네트워킹』(2015), 『실전 IoT 네트워크 프로그래밍』(2015), 『애플 워치 WatchKit 프로그래밍』(2015), 『현대 네트워크 기초 이론』(2016), 『도커 컨테이너』(2017), 『스마트 IoT 프로젝트』(2017), 『파이썬으로 배우는 인공지능』(2017), 『메이커를 위한 실전 모터 가이드』(2018), 『트러블 슈팅 도커』(2018), 『Go 마스터하기』(2018) 등을 번역했다.

역자 : 김은도

한양대학교에서 응용물리학과를 졸업한 뒤, 과학기술연합대학원대학교(UST)를 통해 한국전자통신연구원(ETRI) 표준연구본부에 근무하며 정보통신네트워크공학을 전공으로 박사 학위를 취득했다. 현재는 KT 융합기술원 인프라연구소에 선임연구원으로 재직 중이며, 주 연구 분야는 SDN과 NFV이다. ICT-DIY 활동에 관심이 많아, 대학원생 시절 ICT-DIY 커뮤니티의 리더를 역임하기도 했다.

역자 : 서영빈

서울시립대학교에서 기계정보공학을 전공한 후, 현재 과학기술연합대학원대학교에서 무기체계공학을 전공으로 박사 과정을 밟고 있다. 복합항법을 중점으로 연구하면서 위성항법으로도 연구를 했고, 순수항법으로도 연구를 하면서 다양한 분야의 연구를 하고 있다. 지금은 베이지안 필터 이론을 하나 만들어서 지형대조항법과 엮어볼 궁리를 하는 중이다.
일 이외에는 게임이나 야구, 연주로 시간을 보내고 있지만 아직은 연구가 제일 재미있는 것 같다.

작가의 말

이 책의 집필 목적은 이러한 문제를 개괄적으로 소개하고 이러한 문제를 해결하기 위한 몇 가지 공통적인 방법을 독자에게 제시하는 것이다. 자율 주행 시스템의 궁극적인 성공을 위해서는 높은 기술 수준, 하드웨어와 소프트웨어의 완전한 통합, (클라우드 서버 같은) 고정형(resident) 플랫폼과의 긴밀한 시너지 효과 등이 반드시 필요하다. 이 책은 지상을 주행하는 자동차를 중점적으로 소개한다. 그중에서도 도심이나 교외의 도로뿐만 아니라 오프로드도 달리는 자동차를 대상으로 설명한다. 이 책의 목적은 학계뿐만 아니라 산업계 엔지니어 독자들에게 주변 환경 감지부터 동작 제어나 클라우드 기반 서버 지원에 이르기까지, 자율 주행 자동차를 개발하는 과정에서 부딪히는 문제들과 이에 대한 해결 방법, 향후 연구 주제 등을 개괄적으로 소개하는 것이다. 부족한 설명을 보완하기 위해 방대한 참고문헌을 제공했는데, 이를 통해 그동안 이 분야에 쌓인 연구 기술 결과 더미에서 방향을 찾아가는 데 도움이 될 것이다.

목차

지은이 소개
옮긴이 소개
옮긴이의 말
요약
들어가며

1장. 자율 주행 개요
__1.1 자율 주행 기술의 개요
__1.2 자율 주행 알고리즘
____1.2.1 센싱
____1.2.2 인지
____1.2.3 개체 인지 및 추적
____1.2.4 동작
________동작 예측
________경로 계획
________장애물 회피
__1.3 자율 주행 클라이언트 시스템
____1.3.1 ROS
________신뢰성
________성능
________보안
____1.3.2 하드웨어 플랫폼
__1.4 자율 주행 클라우드 플랫폼
____1.4.1 시뮬레이션
____1.4.2 HD 맵 생성
____1.4.3 딥러닝 모델 학습
__1.5 시작에 불과하다

2장. 자율 주행을 위한 로컬라이제이션
__2.1 GNSS를 이용한 로컬라이제이션
____2.1.1 GNSS 개요
____2.1.2 GNSS 오차 분석
____2.1.3 위성 기반 오차 보정 시스템
____2.1.4 RTK와 DGPS
____2.1.5 PPP 알고리즘
____2.1.6 GNSS INS 통합
__2.2 HD 맵과 라이다를 이용한 로컬라이제이션
____2.2.1 라이다 개요
____2.2.2 HD 맵 개요
____2.2.3 라이다와 HD 맵을 이용한 로컬라이제이션
__2.3 비주얼 오도메트리
____2.3.1 스테레오 비주얼 오도메트리
____2.3.2 모노큘러 비주얼 오도메트리
____2.3.3 관성 비주얼 오도메트리
__2.4 추측 항법과 휠 오도메트리
____2.4.1 휠 인코더
____2.4.2 휠 오도메트리 오차
____2.4.3 휠 오도메트리 오차의 경감
__2.5 센서 융합
____2.5.1 어반 챌린지의 CMU 보스
____2.5.2 어반 챌린지의 스탠퍼드 주니어
____2.5.3 메르세데스 벤츠의 버사
__2.6 참고문헌

3장. 자율주행을 위한 인지
__3.1 개요
__3.2 데이터 세트
__3.3 탐지
__3.4 분할
__3.5 스테레오, 옵티컬 플로우, 씬 플로우
____3.5.1 스테레오와 깊이
____3.5.2 옵티컬 플로우
____3.5.3 씬 플로우
__3.6 추적
__3.7 결론
__3.8 참고문헌

4장. 딥러닝을 통한 자율 주행의 인지
__4.1 컨볼루션 심층 신경망
__4.2 탐지
__4.3 의미 분할.
__4.4 스테레오와 옵티컬 플로우
____4.4.1 스테레오
____4.4.2 옵티컬 플로우
__4.5 결론
__4.6 참고문헌

5장. 예측 및 경로 계획
__5.1 계획 및 제어의 개요
____5.1.1 아키텍처: 넓은 의미의 계획 및 제어
____5.1.2 모듈의 범위: 여러 모듈의 협력을 통한 문제 해결
__5.2 트래픽 예측
____5.2.1 분류를 이용한 동작 예측
________자동차 동작 예측을 위한 특징 설계
________자동차 동작 예측을 위한 모델 선택
____5.2.2 자동차 궤적 생성
__5.3 차로 수준 경로 계획
____5.3.1 경로 계획을 위한 가중치 방향성 그래프 구성 방법
____5.3.2 경로 계획 알고리즘
________데이크스트라 알고리즘을 적용한 자율 주행 자동차 경로 계획 알고리즘
________A* 알고리즘을 적용한 자율 주행 자동차 경로 계획 알고리즘
____5.3.3 경로 계획 그래프 비용: 유연한 경로 계획 또는 엄격한 경로 계획
__5.4 결론
__5.5 참고문헌

6장. 결정, 계획, 제어
__6.1 동작 결정
____6.1.1 마르코프 결정 과정 접근법
____6.1.2 시나리오 기반의 분할 정복 접근법
________합성 결정
________독자 결정
________시나리오 구성 및 시스템 설계
__6.2 모션 계획
____6.2.1 자동차 모델, 도로 모델, SL 좌표계
____6.2.2 경로 계획 및 속도 계획을 통한 모션 계획
________동적 프로그래밍을 통한 최소 비용 경로 탐색
________ST 그래프를 통한 속도 계획
____6.2.3 종방향 계획과 횡방향 계획을 통한 모션 계획
________횡방향 계획
________종방향 계획
________추종
________양보 및/또는 추월에 의한 차로 변경
________정지
__6.3 피드백 제어
____6.3.1 자전거 모델
____6.3.2 PID 제어
__6.4 결론
__6.5 참고문헌

7장. 강화 학습 기반의 계획 및 제어
__7.1 서론
__7.2 강화 학습
____7.2.1 Q 학습
____7.2.2 액터-크리틱 방법
__7.3 자율 주행을 위한 학습 기반 계획 및 제어
____7.3.1 동작 결정을 위한 강화 학습
____7.3.2 계획 및 제어를 위한 강화 학습
________특수한 경우
________미해결 문제와 어려운 문제에 대한 몇 가지 견해
__7.4 결론
__7.5 참고문헌

8장. 자율 주행을 위한 클라이언트 시스템
__8.1 복잡한 자율 주행 시스템
__8.2 자율 주행을 위한 OS
____8.2.1 ROS 개요
________ROS의 기초
____8.2.2 시스템 신뢰성
____8.2.3 성능 개선
____8.2.4 자원 관리 및 보안
__8.3 컴퓨팅 플랫폼
____8.3.1 컴퓨팅 플랫폼 구현
____8.3.2 기존 컴퓨팅 솔루션
________GPU 기반 컴퓨팅 솔루션
________DSP 기반 솔루션
________FPGA 기반 솔루션
________ASIC 기반 솔루션
____8.3.3 컴퓨터 아키텍처 설계 분석
________부하의 종류에 최적화된 컴퓨팅 장치
________모바일 프로세서 기반의 자율 주행
________컴퓨팅 플랫폼 설계
__8.4 참고문헌

9장. 자율 주행을 위한 클라우드 플랫폼
__9.1 개요
__9.2 인프라스트럭처
____9.2.1 분산 컴퓨팅 프레임워크
____9.2.2 분산 스토리지
____9.2.3 이종 컴퓨팅
__9.3 시뮬레이션
____9.3.1 BinPipeRDD
____9.3.2 스파크와 ROS 연동하기
____9.3.3 성능
__9.4 모델 트레이닝
____9.4.1 스파크를 사용하는 이유
____9.4.2 트레이닝 플랫폼 아키텍처
____9.4.3 이종 컴퓨팅
__9.5 HD 맵 생성
____9.5.1 HD 맵
____9.5.2 클라우드를 이용한 맵 생성
__9.6 결론
__9.7 참고문헌

찾아보기

출판사 서평

★ 이 책에서 다루는 내용 ★

컴퓨터 및 공학 배경지식을 갖춘 일반 독자를 대상으로 자율 주행 자동차에 관련된 기술을 전반적으로 소개하는 최초의 책으로, 자율 주행 자동차 시스템 개발하면서 얻은 저자의 실전 경험이 담겨 있다. 자율 주행 자동차를 위한 시스템은 크게 세 가지 서브시스템, (1) 로컬라이제이션, 인지, 계획, 제어를 위한 알고리즘, (2) 로보틱스 OS 및 하드웨어 플랫폼을 비롯한 클라이언트 시스템, (3) 데이터 스토리지, 시뮬레이션, HD 매핑, 딥러닝 모델 트레이닝을 위한 클라우드 플랫폼 등이 복잡하게 구성... 더보기

북로그 리뷰 (0) 쓰러가기

도서 구매 후 리뷰를 작성하시면 통합포인트를 드립니다.
결제 90일 이내 작성 시 300원 / 발송 후 5일 이내 작성시 400원 / 이 상품의 첫 리뷰 작성 시 500원
(포인트는 작성 후 다음 날 적립되며, 도서 발송 전 작성 시에는 발송 후 익일에 적립됩니다.
외서/eBook/음반/DVD/GIFT 및 잡지 상품 제외)
안내
  • 해당도서의 리뷰가 없습니다.

Klover 평점/리뷰 (0)

문장수집 (0) 문장수집 쓰기 나의 독서기록 보기
※구매도서의 문장수집을 기록하면 통합포인트 적립 안내

교환/반품/품절안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품/품절안내
반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
[1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
    또는 고객센터 (1544-1900)
반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유
  • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
  • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
  • 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
  • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
  • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
    해당되는 경우
(1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①양서-판매정가의 12%, ②일서-판매정가의 7%를 적용)
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
이메일과 문자로 안내드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
  • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
    소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
  • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
    소비자 보호에 관한 법률에 따라 처리함

이 분야의 베스트

더보기+

이 분야의 신간

더보기+

바로가기

  • 우측 확장형 배너 2
  • 우측 확장형 배너 2

최근 본 상품