본문내용 바로가기
MD의선택 무료배송 이벤트 경품 소득공제

AWS 머신 러닝 아마존 머신 러닝 서비스를 이용한 애플리케이션 개발

알렉시스 페리에 지음 | 정준영 옮김 | 에이콘출판 | 2018년 01월 31일 출간
  • 정가 : 30,000원
    판매가 : 27,000 [10%↓ 3,000원 할인]
  • 통합포인트 :
    [기본적립] 1,500원 적립 [5% 적립] 안내 [추가적립] 5만원 이상 구매 시 2천원 추가적립 [회원혜택] 우수회원 5만원 이상 구매 시 2~3% 추가적립
  • 추가혜택 : 카드/포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 배송일정 : 서울특별시 종로구 세종대로 기준 지역변경
    09월 27일 출고 예정 배송일정 안내
  • 바로드림 : 인터넷으로 주문하고 매장에서 직접 수령 안내
장바구니 담기 바로구매

책 그리고 꽃 서비스
책 그리고 꽃 | 책과 꽃을 함께 선물하세요 자세히보기

닫기

바로드림 주문 선물하기 보관함 담기

이 책의 이벤트 해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.

  • 에이콘의 도서를 한 눈에 살펴보세요
    2017.11.23 ~ 2019.12.31
  • #리드잇 페이스북 페이지 팔로우 하시고, 신간소식 빠르게 받아보..
    2017.06.22 ~ 2025.07.31
  • MANNING, O'REILLY, PACKT, WILE..
    2016.03.07 ~ 2020.12.31
  • 설문참여 시 매월 5명 추첨통해 선물을 드립니다.
    10. 14 ~ 12. 31
상품상세정보
ISBN 9791161751085(1161751084)
쪽수 336쪽
크기 190 * 237 * 23 mm /778g 판형알림
이 책의 원서/번역서 Effective Amazon Machine Learning: Machine learning in the cloud/Perrier, Alexis

책소개

이 책이 속한 분야

이 책의 주제어

AWS가 제공하는 머신 러닝 서비스를 이용하면, 사용자가 복잡한 머신 러닝 내부 알고리즘과 기술을 배우지 않고도 AWS의 S3나, RDS, 레드시프트에 저장된 데이터로 학습 모델을 만들고 애플리케이션을 개발할 수 있다. 직관적인 웹 기반 마법사 기능과 자동화를 위한 SDK, 데이터 변환을 위한 레시피, 학습된 모델의 성능 평가 결과가 자동으로 제공되고, AWS의 다른 서비스와 연동해 배치 또는 실시간으로 예측할 수 있으며, 사용한만큼만 비용이 지불되는 완전 관리형 서비스다.

저자소개

저자 : 알렉시스 페리에

저자 알렉시스 페리에는 보스턴에 있는 도슨트 헬스(Docent Health)라는 스타트업의 데이터 과학자다. 헬스케어 분야에서 환자의 경험을 개선하기 위해 머신 러닝과 자연어 처리 관련 업무를 하고 있다. 확률적 알고리즘의 힘에 매료돼 데이터 과학 커뮤니티에서 강사, 블로거, 발표자로 활발히 활동하고 있으며, 텔레콘 파리 테크(Telecom Paris Tech에)서 신호 처리 분야 박사 학위를 받고 보스턴에 거주하고 있다.

역자 : 정준영

역자 정준영은 처음 입사한 한글과컴퓨터에서 심마니 서비스로 검색을 시작했다. SK컴즈(네이트닷컴), KTH(파란닷컴), 삼성전자(갤럭시앱스 등)를 거쳐 현재 쿠팡에서 검색을 담당하고 있다. 새로운 영역에 도전해보고자 시작한 첫 번역이다

작가의 말

빅데이터와 인공지능은 일상생활에 스며들어 있으며, 수십억 달러 규모의 클라우드 기반 서비스로서의 머신 러닝 MLaaS 산업을 촉진하고 있다. 시장에 있는 여러 MLaaS 플랫폼 중 아마존 머신 러닝은 단순함을 자랑한다. 아마존 머신 러닝은 ‘고수준의 기술 자원 없이도 성능과 비용의 균형을 유지할 수 있는 서비스를 제공해 예측 분석에 대한 진입 장벽을 낮춘다’는 명확한 목표를 갖고 2015년 4월에 출시됐다. 아마존 머신 러닝은 AWS 생태계와 결합해 예측 분석을 비즈니스 데이터 파이프라인의 자연스러운 요소로 만든다.
이 책은 두 가지 목표를 가지고 아마존 머신 러닝의 단순화 접근법을 따른다. 하나는 서비스의 잠재력을 충분히 활용하기 위해 필요한 데이터 과학에 대한 핵심 지식이고, 또 다른 하나는 예측 분석을 중심으로 완전한 기능을 갖춘 데이터 파이프 라인을 구축해, 효과적으로 예측 분석을 데이터 주도 애플리케이션의 핵심 추진력으로 만드는 것이다.

★ 옮긴이의 말 ★

머신 러닝은 기존 데이터의 패턴을 학습한 모델을 새로운 데이터에 적용해 예측(사용자가 이 상품을 살 것인지 등)하거나 특징에 따라 분류(고객이 대출을 잘 상환할 것인지 등)하는 기술이다. 이를 잘 이용하면 사업의 효율성을 높이거나 리스크를 줄일 수 있고, 더 나아가 새로운 서비스를 개발할 수 있기 때문에 머신 러닝은 다양한 영역에서 활용되고 있다
또 하나의 큰 흐름은 여러 사업 분야에서 클라우드를 활용해 인프라를 구축하고 있다는 것이다. 머신 러닝 기반 애플리케이션은 결국 데이터와 알고리즘의 조합이다. 데이터가 클라우드에 존재한다면 이를 활용하는 애플리케이션도 클라우드 기반이 될 가능성이 크다.
퍼블릭 클라우드에서 1위인 AWS가 제공하는 머신 러닝 서비스는 AWS의 다양한 서비스와 연동해 사용자가 손쉽게 머신 러닝을 이용한 애플리케이션을 개발할 수 있도록 돕는다.
이 책은 회귀 분석 기법에 관한 간단한 소개에서 시작한다. 데이터 수집, 머신 러닝에 맞게 가공, 학습 단계, 학습 모델에 대한 평가, 실제 데이터를 만들어진 모델에 적용하기까지 머신 러닝을 중심으로 하는 애플리케이션을 개발하는 전체 사이클을 설명한다. 또한 파이썬 언어로 AWS SDK를 이용해 전체 사이클을 자동화할 수 있으며, S3나 RDS, 레드시프트에 저장된 데이터를 배치 처리하는 것과 키네시스와 람다를 이용한 실시간 처리에 관한 내용을 모두 포함한다.

목차

1장. 머신 러닝과 예측 분석 소개

__아마존 머신 러닝 소개
____서비스로서의 머신 러닝
____AWS 융합 활용하기
____성능 비교
____가격 책정
__예측 분석 이해
____가장 간단한 예측 분석 알고리즘 구축하기
____회귀와 분류
____로지스틱 회귀로 회귀를 분류 문제로 확장하기
____결과를 예측하기 위한 특징 추출하기
__예측을 위한 선형 모델 심화
데이터셋 검증
____아마존 머신 러닝에서 결여된 것
____통계적 접근과 머신 러닝 접근
__요약

2장. 머신 러닝 정의와 개념

__알고리즘? 모델?
__지저분한 데이터 다루기
____고전적인 데이터셋과 실제 데이터셋
____다중 분류 모델에 관한 가정
____누락값
____정규화
____불균형 데이터셋
____다중공선성 해결
____이상값 검출
____비선형 패턴 수용
____특징 추가
____전처리 요약
__예측 분석 작업 흐름
____아마존 머신 러닝에서 학습과 평가
__저품질 인지와 수정
____언더피팅
____오버피팅
____선형 모델에 관한 정규화
____모델의 성능 평가
__요약

3장. 아마존 머신 러닝 워크플로 개요

__AWS 계정 만들기
____보안
__계정 설정하기
____유저 생성
____정책 정하기
____로그인 크리덴셜 생성
__표준 아마존 머신 러닝 워크플로 개요
____데이터셋
__모델
__모델 평가
__배치 예측 만들기
__요약

4장. 데이터셋 준비하기

__데이터셋으로 작업하기
____공개 데이터셋 찾기
____타이타닉 데이터셋 소개
__데이터 준비
____데이터 나누기
____데이터를 S3에 올리기
__데이터 소스 만들기
____데이터 스키마 확인
____스키마 재사용
__데이터 통계 진단
__아테나와 특징 공학
____아테나 소개
____타이타닉 데이터셋 만들기
__SQL로 데이터 가공하기
____누락값
____개선된 데이터 소스 만들기
__요약

5장. 모델 생성

__레시피로 데이터 변환하기
____변수 관리
____일곱 가지 변환을 통한 데이터 처리
__모델 만들기
____제안된 레시피 편집하기
____모델의 매개변수화
__평가 생성하기
____모델 평가하기
__로그 분석
____학습률 최적화
__요약

6장. 예측과 성능

__배치 예측 만들기
____배치 예측 작업 만들기
____예측 결과 해석하기
__실시간 예측 만들기
____수작업으로 변수의 영향 조사
____실시간 예측 설정
__요약

7장. 명령행과 SDK

__시작과 설정
____CLI vs SDK 사용하기
____AWS CLI 설치
____CLI 구문 가져오기
____JSON 파일을 이용해 파라미터 전달하기
____Ames Housing 데이터셋 소개
____쉘 명령으로 데이터셋 분리하기
__CLI를 사용하는 간단한 프로젝트
____아마존 머신 러닝 CLI 명령 개요
____데이터 소스 만들기
____모델 만들기
____create-evaluation 명령으로 모델 평가하기
____교차 유효성 검증이란?
____몬테 카를로 교차 유효성 검증 구현하기
____결론
__Boto3, the Python SDK
____아마존 머신 러닝을 위한 Python SDK로 작업하기
____Boto3로 반복적 특징 선택 구현하기
__요약

8장. 레드시프트에서 데이터 소스 만들기

__RDS와 레드시프트 중에서 선택
____레드시프트 인스턴스 만들기
____Psql로 레드시프트 질의 실행하기
____비선형 데이터셋 만들기
__다항회귀 소개
____기준선 정하기
__아마존 머신 러닝에서 다항회귀
____Python에서 실험하기
____결과 해석하기
__요약

9장. 실시간 데이터 분석 파이프라인 구축하기

__실시간 트위터 감성 분석
____트위터의 인기 콘테스트
____데이터셋과 모델 훈련하기
____키네시스
____트윗 수집하기
____레드시프트 데이터베이스
____Redshfit를 키네시스 Firehose에 더하기
____Lambda로 전처리하기
____결과 분석하기
__분류와 회귀를 넘어서
__요약

출판사 서평

★ 이 책에서 다루는 내용 ★

아마존 머신 러닝을 이용해 처음부터 예측 분석까지 수행하는 방법
중요 데이터 과학 개념에 대한 실습 경험
고전 회귀 및 분류 문제 해결
명령행 인터페이스와 Python SDK를 이용해 프로젝트 실행
아마존 생태계를 활용해 확장된 데이터 소스
실시간 또는 고급 프로젝트 구현

★ 이 책의 대상 독자 ★

실제 인공 지능 애플리케이션을 구축하려고 하는 파이썬 개발자를 위한 책이다.
파이썬 초보자도 쉽게 사용할 수 있지만, 파이썬에 익숙하다면 코드를 활용해 다양한 작업을 할 수 있다.... 더보기

북로그 리뷰 (0) 쓰러가기

도서 구매 후 리뷰를 작성하시면 통합포인트를 드립니다.
결제 90일 이내 작성 시 300원 / 발송 후 5일 이내 작성시 400원 / 이 상품의 첫 리뷰 작성 시 500원
(포인트는 작성 후 다음 날 적립되며, 도서 발송 전 작성 시에는 발송 후 익일에 적립됩니다.
외서/eBook/음반/DVD/GIFT 및 잡지 상품 제외)
안내
  • 해당도서의 리뷰가 없습니다.

Klover 평점/리뷰 (0)

교환/반품/품절안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품/품절안내
반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
[1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
    또는 고객센터 (1544-1900)
반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유
  • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
  • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
  • 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
  • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
  • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
    해당되는 경우
(1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①양서-판매정가의 12%, ②일서-판매정가의 7%를 적용)
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
이메일과 문자로 안내드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
  • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
    소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
  • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
    소비자 보호에 관한 법률에 따라 처리함

이 책의 원서번역서

안내

이 분야의 베스트

더보기+

이 분야의 신간

더보기+

바로가기

  • 우측 확장형 배너 2
  • 우측 확장형 배너 2

최근 본 상품