º»¹®³»¿ë ¹Ù·Î°¡±â
¹«·á¹è¼Û »çÀºÇ° ¼Òµæ°øÁ¦

Guardian for Mathematical Physics

¹Úȯ¹è ÁöÀ½ | °æºÏ´ëÇб³ÃâÆÇºÎ | 2016³â 12¿ù 15ÀÏ Ãâ°£
  • Á¤°¡ : 19,000¿ø
    ÆÇ¸Å°¡ : 19,000¿ø [0%¡é 0¿ø ÇÒÀÎ]
  • ÅëÇÕÆ÷ÀÎÆ® :
    [±âº»Àû¸³] 950¿ø Àû¸³ [5% Àû¸³] [Ãß°¡Àû¸³] 5¸¸¿ø ÀÌ»ó ±¸¸Å ½Ã 2õ¿ø Ãß°¡Àû¸³ ¾È³» [ȸ¿øÇýÅÃ] ½Ç¹öµî±Þ ÀÌ»ó, 3¸¸¿ø ÀÌ»ó ±¸¸Å ½Ã 2~4% Ãß°¡Àû¸³ ¾È³»
  • Ãß°¡ÇýÅà : Æ÷ÀÎÆ® ¾È³» µµ¼­¼Òµæ°øÁ¦ ¾È³» Ãß°¡ÇýÅà ´õº¸±â
  • ¹è¼Ûºñ : ¹«·á ¹è¼Ûºñ ¾È³»
  • ¹è¼ÛÀÏÁ¤ : ¼­¿ïƯº°½Ã Á¾·Î±¸ ¼¼Á¾´ë·Î ±âÁØ Áö¿ªº¯°æ
    03¿ù 10ÀÏ Ãâ°í ¿¹Á¤ ¹è¼ÛÀÏÁ¤ ¾È³»
  • ¹Ù·Îµå¸² : ÀÎÅͳÝÀ¸·Î ÁÖ¹®ÇÏ°í ¸ÅÀå¿¡¼­ Á÷Á¢ ¼ö·É ¾È³» ¹Ù·Îµå¸² ÇýÅÃ
    ÈÞÀÏ¿¡´Â ¹Ù·Îµå¸² ÇȾ÷À¸·Î ´õ »¡¸® ¹Þ¾Æ º¸¼¼¿ä. ¹Ù·Îµå¸² ÇýÅùްí ÀÌ¿ëÇϱâ

ÀÌ Ã¥ÀÇ À̺¥Æ® ÇØ¿ÜÁÖ¹®/¹Ù·Îµå¸²/Á¦ÈÞ»çÁÖ¹®/¾÷ü¹è¼Û°ÇÀÇ °æ¿ì 1+1 ÁõÁ¤»óǰÀÌ ¹ß¼ÛµÇÁö ¾Ê½À´Ï´Ù.

  • Çà»çµµ¼­ ±¸¸Å½Ã, ¹®±¸·ù »çÀºÇ° ¼±Åð¡´É
    2021.02.22 ~ 2021.03.31
»óǰ»ó¼¼Á¤º¸
ISBN 9788971804506(8971804505)
Âʼö 294ÂÊ
Å©±â 185 * 257 * 19 mm /931g ÆÇÇü¾Ë¸²

Ã¥¼Ò°³

ÀÌ Ã¥ÀÌ ¼ÓÇÑ ºÐ¾ß

¡ºGuardian for Mathematical Physics¡»´Â ¼öÇÐ ¹°¸® °úÁ¤¿¡¼­ ¼ö½Ä°ú ±× Àǹ̸¦ ¹è¿ì°í ÀÌÇØÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ´Â ÇлýµéÀ» À§ÇÑ Ã¥À¸·Î½á, °íÀü ¿ªÇаú ÀüÀÚ±âÇÐ ¹× ¾çÀÚ ¿ªÇÐÀÇ ¿¹¸¦ ÅëÇØ ÇлýµéÀÇ ÀÌÇØ¸¦ µ½°í ÀÖ´Ù. °¢ éÅÍÀÇ ³»¿ëÀº »çÀü Áö½ÄÀÌ ¾ø°Å³ª ÀÌÀü éÅ͸¦ °øºÎÇÏÁö ¾ÊÀº ÇлýÀÌ¶óµµ ½±°Ô ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï ±¸¼ºµÇ¾ú´Ù. ÇлýµéÀº ÀÌ Ã¥À» ÅëÇØ ¼ö¸® ¹°¸®ÇÐÀ» °øºÎÇÒ ¶§ Á÷¸éÇØ¾ß Çß´ø ¾î·Á¿òÀ» ±Øº¹Çϰí, ½ÉÈ­°úÁ¤À» À§ÇÑ Ãʼ®À¸·Î Ȱ¿ëÇÒ ¼ö ÀÖÀ» °ÍÀÌ´Ù.

¸ñÂ÷

Chapter 1. Introduction
1.1 Trigonometric Functions
1.2 Double-and Half-angle Formulas
1.3 Hyperbolic Functions
1.4 Differentiation
1.5 Chain Rule
1.6 Integration
1.7 Complex numbers
1.8 Dirac Delta Function
1.9 Equations of Trajectory

Chapter 2. Differential Equation
2.1 Concept of Differential Equation
2.2 First Order Ordinary Differential Equation
2.3 Homogeneous Second Order Differential Equation
2.4 Inhomogeneous Second Order Differential Equation

Chapter 3. Vectors
3.1 Coordinate Systems
3.2 Vectors in Rectangular Coordinate System
3.3 Gradient, Divergence and Curl
3.4 Divergence and Stokes¡¯ Theorem
3.5 Tensor

Chapter 4. Physical Quantities in Coordinate Systems
4.1 Spherical Coordinate System
4.2 Cylindrical Coordinate System
4.3 Curvilinear Coordinate System

Chapter 5. Infinite Series
5.1 Infinite Series
5.2 Taylor Series
5.3 Taylor Series for More Than One Variable

Chapter 6. Matrices
6.1 Matrix Representation
6.2 Operator
6.3 Eigenvalue Equation
6.4 Notation in Quantum Mechanics

Chapter 7. Special Functions
7.1 Beta and Gamma Functions
7.2 Legendre Differential Equation
7.3 Solutions for Bessel¡¯s Equation

Chapter 8. Fourier Transformation
8.1 Fourier Series
8.2 Fourier Transform

Chapter 9. Variational Principle
9.1 Lagrange¡¯s Equation
9.2 Lagrange Multipliers Method

Appendix
References
Index

Klover ¸®ºä (0)

ºÏ·Î±× ¸®ºä (0) ¾²·¯°¡±â

µµ¼­ ±¸¸Å ÈÄ ¸®ºä¸¦ ÀÛ¼ºÇϽøé
°áÁ¦ 90ÀÏ À̳» 300¿ø, ¹ß¼Û ÈÄ 5ÀÏ À̳» 400¿ø, ÀÌ »óǰÀÇ Ã¹ ¸®ºä 500¿øÀÇ Æ÷ÀÎÆ®¸¦ µå¸³´Ï´Ù.

Æ÷ÀÎÆ®´Â ÀÛ¼º ÈÄ ´ÙÀ½ ³¯ Àû¸³µÇ¸ç, µµ¼­ ¹ß¼Û Àü ÀÛ¼º ½Ã¿¡´Â ¹ß¼Û ÈÄ ÀÍÀÏ¿¡ Àû¸³µË´Ï´Ù.
ºÏ·Î±× ¸®ºä´Â º»ÀÎÀÎÁõÀ» °ÅÄ£ ȸ¿ø¸¸ ÀÛ¼º °¡´ÉÇÕ´Ï´Ù.
(¡Ø ¿Ü¼­/eBook/À½¹Ý/DVD/GIFT ¹× ÀâÁö »óǰ Á¦¿Ü) ¾È³»
  • ÇØ´çµµ¼­ÀÇ ¸®ºä°¡ ¾ø½À´Ï´Ù.

¹®Àå¼öÁý (0) ¹®Àå¼öÁý ¾²±â ³ªÀÇ µ¶¼­±â·Ï º¸±â
※±¸¸Åµµ¼­ÀÇ ¹®Àå¼öÁýÀ» ±â·ÏÇϸé ÅëÇÕÆ÷ÀÎÆ® Àû¸³ ¾È³»

±³È¯/¹Ýǰ/ǰÀý¾È³»

¡Ø »óǰ ¼³¸í¿¡ ¹Ýǰ/±³È¯ °ü·ÃÇÑ ¾È³»°¡ ÀÖ´Â °æ¿ì ±× ³»¿ëÀ» ¿ì¼±À¸·Î ÇÕ´Ï´Ù. (¾÷ü »çÁ¤¿¡ µû¶ó ´Þ¶óÁú ¼ö ÀÖ½À´Ï´Ù.)

±³È¯/¹Ýǰ/ǰÀý¾È³»
¹Ýǰ/±³È¯¹æ¹ý ¸¶ÀÌ·ë > ÁÖ¹®°ü¸® > ÁÖ¹®/¹è¼Û³»¿ª > ÁÖ¹®Á¶È¸ > ¹Ýǰ/±³È¯½Åû ,
[1:1»ó´ã>¹Ýǰ/±³È¯/ȯºÒ] ¶Ç´Â °í°´¼¾ÅÍ (1544-1900)

¡Ø ¿ÀǸ¶ÄÏ, ÇØ¿Ü¹è¼ÛÁÖ¹®, ±âÇÁÆ® ÁÖ¹®½Ã [1:1»ó´ã>¹Ýǰ/±³È¯/ȯºÒ]
    ¶Ç´Â °í°´¼¾ÅÍ (1544-1900)
¹Ýǰ/±³È¯°¡´É ±â°£ º¯½É¹ÝǰÀÇ °æ¿ì ¼ö·É ÈÄ 7ÀÏ À̳»,
»óǰÀÇ °áÇÔ ¹× °è¾à³»¿ë°ú ´Ù¸¦ °æ¿ì ¹®Á¦Á¡ ¹ß°ß ÈÄ 30ÀÏ À̳»
¹Ýǰ/±³È¯ºñ¿ë º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹Ýǰ/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã
¹Ýǰ/±³È¯ ºÒ°¡ »çÀ¯
  • ¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óǰ µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì
    (´ÜÁö È®ÀÎÀ» À§ÇÑ Æ÷Àå ÈѼÕÀº Á¦¿Ü)
  • ¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óǰ µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
    ¿¹) È­Àåǰ, ½Äǰ, °¡ÀüÁ¦Ç°(¾Ç¼¼¼­¸® Æ÷ÇÔ) µî
  • º¹Á¦°¡ °¡´ÉÇÑ »óǰ µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì
    ¿¹) À½¹Ý/DVD/ºñµð¿À, ¼ÒÇÁÆ®¿þ¾î, ¸¸È­Ã¥, ÀâÁö, ¿µ»ó È­º¸Áý
  • ¼ÒºñÀÚÀÇ ¿äû¿¡ µû¶ó °³º°ÀûÀ¸·Î ÁÖ¹® Á¦À۵Ǵ »óǰÀÇ °æ¿ì ((1)ÇØ¿ÜÁÖ¹®µµ¼­)
  • µðÁöÅÐ ÄÁÅÙÃ÷ÀÎ eBook, ¿Àµð¿ÀºÏ µîÀ» 1ȸ ÀÌ»ó ´Ù¿î·Îµå¸¦ ¹Þ¾ÒÀ» °æ¿ì
  • ½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆÇ¸Å°¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
  • ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡
    ÇØ´çµÇ´Â °æ¿ì
(1) ÇØ¿ÜÁÖ¹®µµ¼­ : ÀÌ¿ëÀÚÀÇ ¿äû¿¡ ÀÇÇÑ °³ÀÎÁÖ¹®»óǰÀ¸·Î ´Ü¼øº¯½É ¹× Âø¿À·Î ÀÎÇÑ Ãë¼Ò/±³È¯/¹Ýǰ ½Ã ¡®ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á¡¯ °í°´ ºÎ´ã (ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á : ¨ç¼­¾çµµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 12%, ¨èÀϺ»µµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 7%¸¦ Àû¿ë)
»óǰ ǰÀý °ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ ǰÀý/Áö¿¬µÉ ¼ö ÀÖÀ¸¸ç, ǰÀý ½Ã °ü·Ã »çÇ׿¡ ´ëÇØ¼­´Â
À̸ÞÀϰú ¹®ÀÚ·Î ¾È³»µå¸®°Ú½À´Ï´Ù.
¼ÒºñÀÚ ÇÇÇØº¸»ó
ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó
  • »óǰÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, ǰÁúº¸Áõ ¹× ÇÇÇØº¸»ó µî¿¡ °üÇÑ »çÇ×Àº
    ¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øÈ¸ °í½Ã)¿¡ ÁØÇÏ¿© 󸮵Ê
  • ´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ
    ¼ÒºñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ

ÀÌ ºÐ¾ßÀÇ ½Å°£

´õº¸±â+

¹Ù·Î°¡±â

  • ¿ìÃø È®ÀåÇü ¹è³Ê 2
  • ¿ìÃø È®ÀåÇü ¹è³Ê 2

ÃÖ±Ù º» »óǰ