»óǰ»ó¼¼Á¤º¸
ISBN |
9788971804506(8971804505) |
Âʼö |
294ÂÊ |
Å©±â |
185 * 257 * 19 mm /931g ÆÇÇü¾Ë¸² |
Ã¥¼Ò°³
ÀÌ Ã¥ÀÌ ¼ÓÇÑ ºÐ¾ß
¡ºGuardian for Mathematical Physics¡»´Â ¼öÇÐ ¹°¸® °úÁ¤¿¡¼ ¼ö½Ä°ú ±× Àǹ̸¦ ¹è¿ì°í ÀÌÇØÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ´Â ÇлýµéÀ» À§ÇÑ Ã¥À¸·Î½á, °íÀü ¿ªÇаú ÀüÀÚ±âÇÐ ¹× ¾çÀÚ ¿ªÇÐÀÇ ¿¹¸¦ ÅëÇØ ÇлýµéÀÇ ÀÌÇØ¸¦ µ½°í ÀÖ´Ù. °¢ éÅÍÀÇ ³»¿ëÀº »çÀü Áö½ÄÀÌ ¾ø°Å³ª ÀÌÀü éÅ͸¦ °øºÎÇÏÁö ¾ÊÀº ÇлýÀÌ¶óµµ ½±°Ô ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï ±¸¼ºµÇ¾ú´Ù. ÇлýµéÀº ÀÌ Ã¥À» ÅëÇØ ¼ö¸® ¹°¸®ÇÐÀ» °øºÎÇÒ ¶§ Á÷¸éÇØ¾ß Çß´ø ¾î·Á¿òÀ» ±Øº¹Çϰí, ½ÉȰúÁ¤À» À§ÇÑ Ãʼ®À¸·Î Ȱ¿ëÇÒ ¼ö ÀÖÀ» °ÍÀÌ´Ù.
¸ñÂ÷
Chapter 1. Introduction
1.1 Trigonometric Functions
1.2 Double-and Half-angle Formulas
1.3 Hyperbolic Functions
1.4 Differentiation
1.5 Chain Rule
1.6 Integration
1.7 Complex numbers
1.8 Dirac Delta Function
1.9 Equations of Trajectory
Chapter 2. Differential Equation
2.1 Concept of Differential Equation
2.2 First Order Ordinary Differential Equation
2.3 Homogeneous Second Order Differential Equation
2.4 Inhomogeneous Second Order Differential Equation
Chapter 3. Vectors
3.1 Coordinate Systems
3.2 Vectors in Rectangular Coordinate System
3.3 Gradient, Divergence and Curl
3.4 Divergence and Stokes¡¯ Theorem
3.5 Tensor
Chapter 4. Physical Quantities in Coordinate Systems
4.1 Spherical Coordinate System
4.2 Cylindrical Coordinate System
4.3 Curvilinear Coordinate System
Chapter 5. Infinite Series
5.1 Infinite Series
5.2 Taylor Series
5.3 Taylor Series for More Than One Variable
Chapter 6. Matrices
6.1 Matrix Representation
6.2 Operator
6.3 Eigenvalue Equation
6.4 Notation in Quantum Mechanics
Chapter 7. Special Functions
7.1 Beta and Gamma Functions
7.2 Legendre Differential Equation
7.3 Solutions for Bessel¡¯s Equation
Chapter 8. Fourier Transformation
8.1 Fourier Series
8.2 Fourier Transform
Chapter 9. Variational Principle
9.1 Lagrange¡¯s Equation
9.2 Lagrange Multipliers Method
Appendix
References
Index
Klover ¸®ºä (0)
µµ¼ ±¸¸Å ÈÄ ¸®ºä¸¦ ÀÛ¼ºÇϽøé
°áÁ¦ 90ÀÏ À̳» 300¿ø, ¹ß¼Û ÈÄ 5ÀÏ À̳» 400¿ø, ÀÌ »óǰÀÇ Ã¹ ¸®ºä 500¿øÀÇ Æ÷ÀÎÆ®¸¦ µå¸³´Ï´Ù.
Æ÷ÀÎÆ®´Â ÀÛ¼º ÈÄ ´ÙÀ½ ³¯ Àû¸³µÇ¸ç, µµ¼ ¹ß¼Û Àü ÀÛ¼º ½Ã¿¡´Â ¹ß¼Û ÈÄ ÀÍÀÏ¿¡ Àû¸³µË´Ï´Ù.
ºÏ·Î±× ¸®ºä´Â º»ÀÎÀÎÁõÀ» °ÅÄ£ ȸ¿ø¸¸ ÀÛ¼º °¡´ÉÇÕ´Ï´Ù.
(¡Ø ¿Ü¼/eBook/À½¹Ý/DVD/GIFT ¹× ÀâÁö »óǰ Á¦¿Ü)
- ÇØ´çµµ¼ÀÇ ¸®ºä°¡ ¾ø½À´Ï´Ù.
±³È¯/¹Ýǰ/ǰÀý¾È³»
¡Ø »óǰ ¼³¸í¿¡ ¹Ýǰ/±³È¯ °ü·ÃÇÑ ¾È³»°¡ ÀÖ´Â °æ¿ì ±× ³»¿ëÀ» ¿ì¼±À¸·Î ÇÕ´Ï´Ù. (¾÷ü »çÁ¤¿¡ µû¶ó ´Þ¶óÁú ¼ö ÀÖ½À´Ï´Ù.)
±³È¯/¹Ýǰ/ǰÀý¾È³»
¹Ýǰ/±³È¯¹æ¹ý |
¸¶ÀÌ·ë > ÁÖ¹®°ü¸® > ÁÖ¹®/¹è¼Û³»¿ª > ÁÖ¹®Á¶È¸ > ¹Ýǰ/±³È¯½Åû ,
[1:1»ó´ã>¹Ýǰ/±³È¯/ȯºÒ] ¶Ç´Â °í°´¼¾ÅÍ (1544-1900)
¡Ø ¿ÀǸ¶ÄÏ, ÇØ¿Ü¹è¼ÛÁÖ¹®, ±âÇÁÆ® ÁÖ¹®½Ã [1:1»ó´ã>¹Ýǰ/±³È¯/ȯºÒ]
¶Ç´Â °í°´¼¾ÅÍ (1544-1900) |
¹Ýǰ/±³È¯°¡´É ±â°£ |
º¯½É¹ÝǰÀÇ °æ¿ì ¼ö·É ÈÄ 7ÀÏ À̳», »óǰÀÇ °áÇÔ ¹× °è¾à³»¿ë°ú ´Ù¸¦ °æ¿ì ¹®Á¦Á¡ ¹ß°ß ÈÄ 30ÀÏ À̳» |
¹Ýǰ/±³È¯ºñ¿ë |
º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹Ýǰ/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã |
¹Ýǰ/±³È¯ ºÒ°¡ »çÀ¯ |
- ¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óǰ µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì
(´ÜÁö È®ÀÎÀ» À§ÇÑ Æ÷Àå ÈѼÕÀº Á¦¿Ü)
- ¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óǰ µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
¿¹) ÈÀåǰ, ½Äǰ, °¡ÀüÁ¦Ç°(¾Ç¼¼¼¸® Æ÷ÇÔ) µî
- º¹Á¦°¡ °¡´ÉÇÑ »óǰ µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì
¿¹) À½¹Ý/DVD/ºñµð¿À, ¼ÒÇÁÆ®¿þ¾î, ¸¸ÈÃ¥, ÀâÁö, ¿µ»ó Ⱥ¸Áý
- ¼ÒºñÀÚÀÇ ¿äû¿¡ µû¶ó °³º°ÀûÀ¸·Î ÁÖ¹® Á¦À۵Ǵ »óǰÀÇ °æ¿ì ((1)ÇØ¿ÜÁÖ¹®µµ¼)
- µðÁöÅÐ ÄÁÅÙÃ÷ÀÎ eBook, ¿Àµð¿ÀºÏ µîÀ» 1ȸ ÀÌ»ó ´Ù¿î·Îµå¸¦ ¹Þ¾ÒÀ» °æ¿ì
- ½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆÇ¸Å°¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
- ÀüÀÚ»ó°Å·¡ µî¿¡¼ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡
ÇØ´çµÇ´Â °æ¿ì
(1) ÇØ¿ÜÁÖ¹®µµ¼ : ÀÌ¿ëÀÚÀÇ ¿äû¿¡ ÀÇÇÑ °³ÀÎÁÖ¹®»óǰÀ¸·Î ´Ü¼øº¯½É ¹× Âø¿À·Î ÀÎÇÑ Ãë¼Ò/±³È¯/¹Ýǰ ½Ã ¡®ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á¡¯ °í°´ ºÎ´ã (ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á : ¨ç¼¾çµµ¼-ÆÇ¸ÅÁ¤°¡ÀÇ 12%, ¨èÀϺ»µµ¼-ÆÇ¸ÅÁ¤°¡ÀÇ 7%¸¦ Àû¿ë)
|
»óǰ ǰÀý |
°ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ ǰÀý/Áö¿¬µÉ ¼ö ÀÖÀ¸¸ç, ǰÀý ½Ã °ü·Ã »çÇ׿¡ ´ëÇØ¼´Â À̸ÞÀϰú ¹®ÀÚ·Î ¾È³»µå¸®°Ú½À´Ï´Ù. |
¼ÒºñÀÚ ÇÇÇØº¸»ó
ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó |
- »óǰÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, ǰÁúº¸Áõ ¹× ÇÇÇØº¸»ó µî¿¡ °üÇÑ »çÇ×Àº
¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øÈ¸ °í½Ã)¿¡ ÁØÇÏ¿© 󸮵Ê
- ´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼ÀÇ
¼ÒºñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ
|