본문내용 바로가기
무료배송 소득공제

케라스로 배우는 신경망 설계와 구현 CNN, RNN, GAN, LSTM 다양한 신경망 모델 설계와 구현

닐로이 푸르카이트 지음 | 김연수 옮김 | 에이콘출판 | 2020년 02월 21일 출간
  • 정가 : 40,000원
    판매가 : 36,000 [10%↓ 4,000원 할인]
  • 통합포인트 :
    [기본적립] 2,000원 적립 [5% 적립] [추가적립] 5만원 이상 구매 시 2천원 추가적립 안내 [회원혜택] 실버등급 이상, 3만원 이상 구매 시 2~4% 추가적립 안내
  • 추가혜택 : 포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 배송일정 : 서울특별시 종로구 세종대로 기준 지역변경
    지금 주문하면 내일(29일,토) 도착 예정 배송일정 안내
  • 바로드림 : 인터넷으로 주문하고 매장에서 직접 수령 안내 바로드림 혜택
    휴일에는 바로드림 픽업으로 더 빨리 받아 보세요. 바로드림 혜택받고 이용하기
상품상세정보
ISBN 9791161753782(1161753788)
쪽수 576쪽
크기 188 * 235 * 33 mm /1053g 판형알림
이 책의 원서/번역서 Hands-On Neural Networks with Keras/Niloy Purkait

책소개

이 책이 속한 분야

이 책의 주제어

인공지능 개발의 핵심인 뉴럴 네트워크의 다양한 모델을 소개한다. 수식과 알고리즘을 기반으로 뉴럴 네트워크의 특징을 설명하고, 케라스를 활용해 직접 뉴럴 네트워크를 구축한다. CNN, RNN, 장단기 메모리(Long Short-Term Memory) 네트워크, 오토인코더, GAN을 깊게 학습하면서 머신러닝, 딥러닝, 인공지능에 관한 폭넓은 지식을 얻을 수 있다. 다양한 뉴럴 네트워크 모델을 결합하고, 실예제를 다루면서 예측 모델링과 함수 근사화(function approximation)를 통해 얻을 수 있는 가치를 이해하게 될 것이다.

상세이미지

케라스로 배우는 신경망 설계와 구현 도서 상세이미지

저자소개

저자 : 닐로이 푸르카이트

Niloy Purkait
기술 및 전략 전문 컨설턴트다. 현재 네덜란드에 거주 중이며, 네덜란드 국내 및 국제 기업을 대상으로 컨설팅을 제공한다. 전문 분야는 인공지능을 포함한 통합 솔루션으로, 끊임없이 변하는 혼란스러운 비즈니스 환경에서 고객이 가야 할 길을 제시하는 데 자부심이 있다.
틸버그대학교(Tilburg University)에서 전략 경영 학사를 전공하고, 미시건대학교(Michigan University)에서 데이터 과학을 수료했다. 신호 처리, 클라우드 컴퓨팅, 머신러닝 및 딥러닝과 같은 분야에서 IBM이 발급하는 고급 산업 레벨 자격 인증을 받았다. 관련 분야에서 지속적으로 학위를 취득하고 있으며, 스스로를 ‘인생 학습자’라고 부른다.

역자 : 김연수

대학 졸업 후 일본의 모 자동차 기업 산하의 한국 내 연구소에서 근무하게 되면서 소프트웨어 개발을 시작했다. 여러 기업에서의 다양한 포지션을 거쳐 지금은 글로벌 기업에서 업무 생산성 향상을 지원하기 위한 학습과 실험을 꾸준히 하고 있다. 최근의 관심사는 좋은 지식의 전달, 회사에 속하지 않고도 지속할 수 있는 삶, 그리고 ‘Why Not Change the World’라는 가치관을 실현하는 것이다.

작가의 말

뉴럴 네트워크란 인공지능(AI, Artificial Intelligence), 딥러닝(Deep Learning)과 관련된 상이한 영역에 존재하는 다양한 문제를 해결하고자 사용하는 수학적 기능이다. 이 책에서는 뉴럴 네트워크의 핵심 개념을 소개한다. 다양한 뉴럴 네트워크 모델을 서로 결합하고, 실제 유스케이스를 다루면서 예측 모델링과 함수 근사화(function approximation)를 통해 얻을 수 있는 가치를 잘 이해하게 될 것이다. 실세계의 학습 데이터셋을 활용해서 컨볼루셔널 뉴럴 네트워크(CNN, Convolutional Neural Networks), 순환 뉴럴 네트워크(RNN, Recurrent Neural Networks), 장단기 기억(LSTM, Long short-Term Memory Networks) 네트워크, 오토인코더(Autoencoder) 및 생성적 대립쌍 네트워크(GAN, Generative Adversarial Networks)에 관해 학습한다.
최신 뉴럴 네트워크 아키텍처를 활용해 컴퓨터 비전, 자연어 처리(NLP, Natural Language Processing)와 같이 인식 태스크의 기반이 되는 기본 아이디어는 물론 세부적인 구현 방법도 학습한다. 이들 태스크를 조합해서 강력한 추론 시스템을 설계함으로써 모델의 생산성을 크게 개선할 수 있을 것이다. 이 책은 뉴럴 네트워크의 내부 동작을 직관적으로 좀 더 잘 이해하는 데 필요한 이론적 관점과 기술적 관점의 주제를 모두 다룬다. 다양한 공통 유스케이스(지도 학습, 비지도 학습, 자기 지도 학습 태스크를 포함)를 다루면서 많은 종류의 네트워크 아키텍처에 관해 학습한다. CNN을 사용한 이미지 인식, LSTM을 활용한 자연어 처리, Q-네트워크를 사용한 강화학습 등이 이에 포함된다. 각각의 아키텍처를 자세히 다루고, 산업 표준 레벨의 프레임워크를 활용해 간단하게 각 아키텍처를 구현해본다.
이 책을 읽으면서 학습을 마치고 나면 대표적인 딥러닝 모델과 프레임워크는 물론이고 딥 러닝을 실세계의 시나리오에 적용하는 것과 같은 성공적인 변화의 시작을 위해 여러분이 선택할 수 있는 모든 사항에 친숙해질 것이다.

목차

1부. 뉴럴 네트워크 기본

1장. 뉴럴 네트워크 개요
__목표 정의
__도구 확인
____케라스
____텐서플로
__뉴럴 학습 기본
____뉴럴 네트워크
____두뇌 관찰
__데이터 과학 기본
____정보 이론
____엔트로피
____교차 엔트로피
____데이터 처리 특성
____데이터 과학에서 머신러닝으로
____머신러닝의 함정
__요약
__더 읽을거리

2장. 뉴럴 네트워크 깊이 들여다보기
__퍼셉트론: 생리학적 뉴런에서 인공지능 뉴런으로
__퍼셉트론 구축
____입력
____가중치
____총화
____비선형성
____바이어스의 역할
____출력
__오차를 활용한 학습
____평균 제곱 오차 손실 함수
__퍼셉트론 훈련
____손실 정량화
____모델 가중치 함수로서의 손실
__역전파
____기울기 계산
____학습률
__퍼셉트론 확장
__단일 레이어 네트워크
____텐서플로 플레이그라운드
____패턴 계층 확인
____한 걸음 더
__요약

3장. 신호 처리: 뉴럴 네트워크를 활용한 데이터 분석
__신호 처리
____표상적 학습
____무작위 기억 회피
____숫자를 활용한 신호 표현
__숫자를 활용한 이미지 표현
__뉴럴 네트워크에 데이터 입력
__텐서 예제
____데이터의 차원
____패키지 임포트
____데이터 로드
____차원 확인
__모델 구축
____케라스 레이어
____가중치 초기화
____케라스 활성화 함수
____모델 시각화
__모델 컴파일
____모델 피팅
__모델 성능 평가
____정규화
__케라스를 활용한 가중치 정규화 구현
__가중치 정규화
__케라스를 활용한 드롭아웃 정규화 구현
____드롭아웃 정규화 실험
____복잡성과 시간
____MNIST 요약
__언어 처리
____감정 분석
__인터넷 영화 리뷰 데이터 세트
____데이터 세트 로딩
____셰이프 및 타입 확인
__단일 학습 인스턴스 확인
____리뷰 디코딩
____데이터 준비
__원핫 인코딩
__특징 벡터화
__라벨 벡터화
__네트워크 구축
____모델 컴파일
____모델 피팅
____검증 데이터
__콜백
____조기 중단 콜백과 히스토리 콜백
____모니터링 지표 선택
__모델 예측 접근
__예측 조사
____IMDB 요약
____연속된 변수 예측
____보스턴 주택 가격 데이터 세트
____데이터 로딩
____데이터 탐색
__특징별 표준화
____모델 생성
____모델 컴파일
____훈련 및 테스트 오차 플로팅
____k-폴드 검증을 활용한 접근 방식 검증
__사이킷-런 API를 활용한 교차 검증
__요약
__연습 문제

2부. 고급 뉴럴 네트워크 구조

4장. 컨볼루션 뉴럴 네트워크
__CNN
__시각의 탄생
__생리학적 시각 이해
__공간 불변성
__뉴런의 수용 필드
__뉴런 계층 구현
__근대 CNN의 탄생
__CNN 설계
____덴스 레이어와 컨볼루셔널 레이어
__컨볼루션 오퍼레이션
____이미지의 공간 구조 보존
____수용 필드
____필터를 활용한 특징 추출
____CNN에서의 오차 역전파
____여러 필터 사용
____스트라이드
____특징이란?
__필터를 활용한 특징 추출 시각화
__복잡한 필터
__컨볼루션 오퍼레이션 요약
__풀링 레이어 이해
____풀링 오퍼레이션의 종류
__케라스를 활용한 CNN 구현
____데이터 확인
____데이터 셰이프 확인
____데이터 표준화
____임포트
__컨볼루셔널 레이어
____필터 수와 크기 정의
____입력 텐서 패딩
____맥스 풀링 레이어
__덴스 레이어를 활용한 분류
__모델 요약
____모델 컴파일
__모델 정확성 확인
__미소 식별 과정의 문제
____블랙박스 내부
____뉴럴 네트워크의 실패
____ConvNet 학습 시각화
____중간 레이어의 뉴럴 활성화 맵 시각화
____입력 이미지 예측
__케라스의 기능적 API
__레이어 채널수 확인
____활성화 맵 시각화
__돌출
__ResNet50을 사용한 돌출 맵 시각화
__로컬 디렉토리에 저장된 이미지 로딩
__케라스의 시각화 모듈
__레이어 검색
__연습 문제
__경사 가중치 클래스 활성화 매핑
__keras-vis를 활용한 클래스 활성화 시각화
__미리 훈련된 모델 활용
__출력 클래스별 최대 활성 값 시각화
__모델 수렴
__여러 필터 인덱스를 활용한 몽환적 분위기 연출
__CNN의 문제점
__뉴럴 네트워크의 환각
__요약

5장. 순환 뉴럴 네트워크
__시퀀스 모델링
__RNN을 사용한 순차 모델링
____전략 선택
____기본 RNN 아키텍처
__다양한 종류의 순차 프로세싱 태스크
____RNN의 학습
____일반적인 RNN 레이어
____피드포워드
__타입 스텝별 활성화 계산
____활성화 방정식 정리
____타임 스텝별 출력 예측
____단방향 정보 흐름의 문제
____장기 의존성 문제
__시간에 따른 역전파
____시간에 따른 역전파 시각화
__경사 폭발 및 소멸
____기울기 레벨에 관한 고려
____클리핑을 활용한 경사 폭발 방지
____메모리를 활용한 경사 소멸 방지
__GRU
____메모리 셀
____업데이트 미수행 시나리오
____업데이트 수행 시나리오
____타임 스텝 사이의 타당성 보존
____타당성 게이트 방정식
__케라스를 활용한 문자 레벨의 언어 모델 구축
____셰익스피어의 햄릿 로딩
____문자 사전 구축
____훈련 시퀀스 준비
____예제 시퀀스 출력
____훈련 데이터 벡터화
__문자 모델링 통계
____문자별 확률 모델링
____임곗값 샘플링
__확률 통제의 목적
____그리디 샘플링
____확률 표본 샘플링
__다양한 RNN 모델 테스팅
____커스텀 콜백을 사용한 텍스트 생성
____다양한 모델 테스팅
__SimpleRNN 구현
____RNN 레이어 스택
__GRU 구현
____양방향 GRU 구현
__실제 데이터의 순차적 처리
____순차적인 데이터 재정렬을 통한 장점
__케라스의 양방향 레이어
____순환 드롭아웃 구현
__출력값 시각화
____무거운 GRU 모델의 출력값 시각화
__요약
__더 읽을거리
__연습 문제

6장. 장단기 기억 네트워크
__복잡한 시퀀스 처리
____메모리 분해
__LSTM 네트워크
__LSTM 해부
____가장 유사한 모델과의 비교
____GRU 메모리
____LSTM 메모리 셀
____활성화 함수와 메모리 별도 처리
__LSTM 메모리 블록
____망각 게이트의 중요성
____차이 개념화
____LSTM 살펴보기
__정보 흐름 시각화
____셀 상태 계산
__경쟁 메모리 계산
__타임 스텝별 활성화 값 계산
__LSTM의 변종 모델과 그 성능
__핍홀 연결 이해
__타이밍과 카운팅의 중요성
____다른 구조적 차이 탐구
__지식 활용
__주식 시장 데이터 모델링
____데이터 임포트
____정렬 및 트렌드 시각화
____데이터프레임을 텐서로 변환
____데이터 분할
____훈련 및 테스팅 인스턴스 플롯
____윈도우 방식 표준화
__데이터 노이즈 제거
__지수 평활법 구현
____곡선 시각화
____한 걸음 앞선 예측 수행
____단순 이동 평균 예측
____지수 이동 평균 예측
__한 걸음 앞선 예측 수행의 문제
__관찰 값 시퀀스 생성
____데이터 셰이프 정리
____임포트
____뉴럴 네트워크 베이스라인
____피드포워드 네트워크 구축
____순환 베이스라인
__LSTM 구현
____LSTM 스택
____헬퍼 함수 활용
____모델 훈련
____결과 시각화
__마무리
__요약
__연습 문제

7장. DQN을 사용한 강화 학습
__보상과 만족
____새로운 학습 평가 방법
__강화학습을 활용한 머신의 조건 형성
____신용도 할당 문제
__탐색 착취 딜레마
__일반적 인공지능지능
__환경 시뮬레이션
____상태, 행동, 보상
__자율 주행 택시
____태스크 이해
____환경 렌더링
____관찰 공간 참조
____행동 공간 참조
____환경과의 상호작용
____무작위로 환경 해결
__즉시 보상과 미래 보상 사이의 트레이드오프
__미래 보상 할인
__마르코프 결정 프로세스
__정책 함수 이해
__상태 가치 평가
__행동 품질 평가
__벨만 방정식 활용
__반복적인 벨만 방정식 업데이트
__뉴럴 네트워크를 사용하는 이유
__Q-학습에서의 정방향 경로 수행
__Q-학습에서의 역방향 경로 수행
____반복적 업데이트를 딥러닝으로 대체
__케라스를 활용한 심층 Q-학습
____임포트
____전처리 기법
____입력 파라미터 정의
____아타리 게임 상태 프로세서 구현
____네트워크 구현
____풀링 레이어 미사용
____실시간 학습의 문제
____재생 메모리에 경험 저장
__탐색과 착취의 균형
____입실론-그리디 탐색 정책
__심층 Q-학습 에이전트 초기화
____모델 훈련
____모델 테스트
____Q-학습 알고리즘 요약
__이중 Q-학습
__경쟁 네트워크 아키텍처
__연습 문제
____Q-학습의 한계
____정책 경사를 활용한 Q-학습 개선
__요약

3부. 뉴하이브리드 모델 아키텍처

8장. 오토인코더
__왜 오토인코더인가?
__자동적인 정보 인코딩
__오토인코더의 한계
__오토인코더 해부
__오토인코더 훈련
__오토인코더 종류
__네트워크 크기와 표현력
__오토인코더에서의 정규화
__희소 오토인코더를 활용한 정규화
____노이즈 제거 오토인코더를 활용한 정규화
____수축적 오토인코더를 활용한 정규화
____케라스를 활용한 얕은 오토인코더 구현
__데이터 확인
____데이터 전처리
____모델 구축
__검증 모델 구현
____별도 인코더 네트워크 정의
____별도 디코더 네트워크 정의
__심층 오토인코더 설계
____임포트
____데이터 이해
____데이터 임포트
__기능적 API를 사용한 오토인코더 설계
____모델 구현
____모델 훈련
____결과 시각화
__심층 컨볼루셔널 오토인코더
__모델 컴파일 및 훈련
__결과 테스트 및 시각화
__노이즈 제거 오토인코더
__노이즈 제거 네트워크 훈련
____결과 시각화
__요약
__연습 문제

9장. 생성적 네트워크
__콘텐트 복제와 생성
__잠재 공간 표상 이해
____컨셉 벡터 식별
__생성적 네트워크 깊이 들여다보기
____통제된 무작위성과 창의성
__무작위성을 활용한 출력 증강
__잠재 공간으로부터의 샘플링
____확률 분포 학습
__생성적 네트워크의 종류
__가변 오토인코더
__케라스를 활용한 VAE 설계
____데이터 로딩과 전처리
__VAE의 인코딩 모듈 구현
____잠재 공간 샘플링
__디코더 모듈 구현
____커스텀 가변 레이어 정의
____모델 컴파일 및 확인
__잠재 공간 시각화
__잠재 공간 샘플링과 출력 생성
____VAE 결론
__생성적 대립쌍 네트워크
____GAN을 활용한 유틸리티 및 실제 응용
__GAN 깊이 살펴보기
____GAN 최적화의 문제점
__케라스를 활용한 GAN 설계
____데이터 준비
____인스턴스 시각화
____데이터 전처리
__생성자 모듈 설계
__판별자 모듈 설계
__GAN 합치기
____훈련용 헬퍼 함수
____출력 표시용 헬퍼 함수
__훈련 함수
____훈련 함수 인자
__판별자 라벨 정의
____GAN 초기화
____배치별 판별자 훈련
__배치별 생성자 훈련
____에폭별 결과 평가
__훈련 세션 실행
____훈련 진행 중 테스트 손실 해석
____에폭별 결과 시각화
__GAN 결론
__요약

4부. 앞으로의 길

10장. 현재와 미래 개발에 관한 고찰
__전이 학습을 활용한 표상 공유
____케라스에서의 전이 학습
____미리 학습된 모델 로딩
____모델의 중간 레이어 획득
____모델에 레이어 추가
____데이터 로딩 및 전처리
____네트워크 훈련
____연습문제
__실험의 결론
__표상 학습
____DNA와 기술
__현재 뉴럴 네트워크의 한계
____기계를 위한 표상 엔지니어링
____전처리 및 데이터 취득
____데이터 평활성
__희소 표상 학습
__하이퍼파라미터 튜닝
__자동 최적화 및 진화 알고리즘
____참고 문헌
__다중 네트워크 예측과 앙상블 모델
__인공지능지능과 뉴럴 네트워크의 미래
____전역 벡터 접근법
____분산된 표상
____하드웨어 문제
__앞으로의 길
__전통적인 컴퓨팅에서의 문제
__양자 컴퓨팅의 등장
____양자 중첩
____큐비트와 전통적인 컴퓨터의 비트
__양자 뉴럴 네트워크
____더 읽을거리
__기술과 사회
__미래에 대한 고찰
__요약

출판사 서평

★ 이 책에서 다루는 내용 ★

■ 예측적 데이터 모델링의 근본적인 특성과 워크플로우
■ 뉴럴 네트워크를 사용해 다양한 타입의 시각 및 언어 신호 처리
■ 네트워크가 데이터를 학습하는 수학적, 통계적 기반 지식 이해
■ CNN, LSTM, GAN과 같은 다양한 뉴럴 네트워크의 설계 및 구현
■ 다양한 아키텍처를 활용해 인식 태스크를 해결하고 시스템에 지능 내재
■ 합성 데이터를 생성하고 증강 전략을 활용한 네트워크로 모델 개선
■ 인공지능 분야의 최신 학술 정보와 상업적 개발 정보 습득

★ 이 책의 대상 독자 ★... 더보기

북로그 리뷰 (0) 쓰러가기

도서 구매 후 리뷰를 작성하시면 통합포인트를 드립니다.
결제 90일 이내 작성 시 300원 / 발송 후 5일 이내 작성시 400원 / 이 상품의 첫 리뷰 작성 시 500원
(포인트는 작성 후 다음 날 적립되며, 도서 발송 전 작성 시에는 발송 후 익일에 적립됩니다.
외서/eBook/음반/DVD/GIFT 및 잡지 상품 제외)
안내
  • 해당도서의 리뷰가 없습니다.

Klover 평점/리뷰 (0)

문장수집 (0) 문장수집 쓰기 나의 독서기록 보기
※구매도서의 문장수집을 기록하면 통합포인트 적립 안내

교환/반품/품절안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품/품절안내
반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
[1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
    또는 고객센터 (1544-1900)
반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유
  • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
  • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
  • 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
  • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
  • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
    해당되는 경우
(1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①양서-판매정가의 12%, ②일서-판매정가의 7%를 적용)
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
이메일과 문자로 안내드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
  • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
    소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
  • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
    소비자 보호에 관한 법률에 따라 처리함

이 분야의 베스트

  • 길벗알앤디
    27,900원
  • 길벗R&D
    17,100원
  • 한국데이터진흥원
    16,200원
  • 길벗R&D
    12,600원
  • NCS 정보처리기술사 연구회
    25,200원
더보기+

이 분야의 신간

  • 김정준
    29,700원
  • NCS 정보처리기술사 연구회
    25,200원
  • 조블리(조애리)
    20,700원
  • 남궁일주
    27,000원
  • 윤종식
    25,200원
더보기+

바로가기

  • 우측 확장형 배너 2
  • 우측 확장형 배너 2

최근 본 상품