본문내용 바로가기
MD의선택 무료배송 사은품 소득공제

AI 엔지니어를 위한 머신러닝 시스템 디자인 패턴

위키북스 데이터 사이언스 시리즈 75
시부이 유우스케 지음 | 하승민 옮김 | 위키북스 | 2021년 11월 24일 출간
  • 정가 : 32,000원
    판매가 : 28,800 [10%↓ 3,200원 할인]
  • 혜택 :
    [기본적립] 1600원 적립 [5% 적립] [추가적립] 5만원 이상 구매 시 2,000원 추가적립 안내 [회원혜택] 회원 등급 별, 3만원 이상 구매 시 2~4% 추가적립 안내 [리뷰적립] 리뷰 작성 시 e교환권 최대 300원 추가적립 안내
  • 추가혜택 : 포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 배송일정 : 서울특별시 종로구 세종대로 기준 지역변경
    당일배송 지금 주문하면 오늘(30일,화) 도착 예정 배송일정 안내

이 책의 이벤트

해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.
  • 2021 올해의 IT 책 투표하고 e-교환권 받으세요!(선착순 ..
    2021.11.22 ~ 2021.12.03
상품상세정보
ISBN 9791158392888(1158392885)
쪽수 432쪽
크기 175 * 235 * 22 mm 판형알림

책소개

이 책이 속한 분야

머신러닝 시스템 구축에 필요한 디자인 패턴을 모두 모았다!
머신러닝을 시스템에 도입하고 유용하게 활용하기 위해서는 그에 맞는 설계나 구현이 필요하다.

이 책은 머신러닝을 실제 시스템에 탑재해 운용하기 위한 노하우를 기록한 사례집이자, 머신러닝 시스템의 디자인 패턴을 모아 놓은 해설서이다. 머신러닝 시스템의 그랜드 디자인 및 머신러닝 시스템을 파이썬으로 구현한 예를 설명함과 동시에 머신러닝을 실제로 활용하기 위한 방법론이나 운용, 개선 노하우 등에 관해서 기술한다.

또한 도커와 쿠버네티스를 활용해 코드의 재현성도 보장하고 있다. 머신러닝의 학습부터 평가, QA를 수행하고 추론기를 릴리스해서 운용하는 일련의 흐름을 아키텍처와 코드를 곁들여 설명한다.

★ 이 책에서 다루는 내용 ★

◎ 머신러닝을 실용화하기 위한 방법에 관해 알아본다.
◎ 파이썬을 활용한 머신러닝 워크플로와 웹 애플리케이션 개발의 개요를 배운다.
◎ 머신러닝을 도입한 시스템의 운용 노하우를 익힌다.
◎ 머신러닝 시스템의 트러블 슈팅과 장애 대응 방법을 습득한다.

상세이미지

머신러닝 시스템 디자인 패턴(AI 엔지니어를 위한)(위키북스 데이터 사이언스 시리즈 75) 도서 상세이미지

목차

[1부] 머신러닝과 ML옵스

▣ 1장: 머신러닝 시스템이란
1.1 머신러닝, ML옵스 및 시스템
___1.1.1. 시작하기
___1.1.2. 이 책의 목적
1.2 사용자 중심의 머신러닝
___1.2.1. 전자 상거래 사이트 예시
___1.2.2. 이미지 업로드 애플리케이션 예시
1.3 머신러닝 시스템에 필요한 요소
1.4 머신러닝 시스템 패턴화하기
___1.4.1. 학습
___1.4.2. 릴리스 방법
___1.4.3. 추론의 흐름
___1.4.4. 품질관리
1.5 이 책의 구성
___1.5.1. 디자인 패턴
___1.5.2. 안티 패턴

[2부] 머신러닝 시스템 만들기

▣ 2장: 모델 만들기
2.1 모델 작성
___2.1.1. 모델 개발의 흐름
___2.1.2. 데이터 분석과 수집
___2.1.3. 모델의 선정과 파라미터 정리
___2.1.4. 전처리
___2.1.5. 학습
___2.1.6. 평가
___2.1.7. 빌드
___2.1.8. 시스템 평가
___2.1.9. 모델 개발은 일방통행이 아니다
2.2 안티 패턴 (Only me 패턴)
___2.2.1. 상황
___2.2.2. 구체적인 문제
___2.2.3. 이점
___2.2.4. 과제
___2.2.5. 회피 방법
2.3 프로젝트, 모델, 버저닝
___2.3.1. 프로젝트, 모델, 버저닝 관리
___2.3.2. 구현
2.4 파이프라인 학습 패턴
___2.4.1. 유스케이스
___2.4.2. 해결하려는 과제
___2.4.3. 아키텍처
___2.4.4. 구현
___2.4.5. 이점
___2.4.6. 검토사항
2.5 배치 학습 패턴
___2.5.1. 유스케이스
___2.5.2. 해결하려는 과제
___2.5.3. 아키텍처
___2.5.4. 구현
___2.5.5. 이점
___2.5.6. 검토사항
2.6 안티 패턴 (복잡한 파이프라인 패턴)
___2.6.1. 상황
___2.6.2. 구체적인 문제
___2.6.3. 이점
___2.6.4. 과제
___2.6.5. 해결방법

▣ 3장: 모델 릴리스하기
3.1 학습환경과 추론환경
___3.1.1. 시작하기
___3.1.2. 학습환경과 추론환경
3.2 안티 패턴 (버전 불일치 패턴)
___3.2.1. 상황
___3.2.2. 구체적인 문제
___3.2.3. 이점
___3.2.4. 과제
___3.2.5. 해결방법
3.3 모델의 배포와 추론기의 가동
___3.3.1. 모델을 릴리스한다는 것이란
___3.3.2. 학습환경과 추론환경의 라이브러리와 버전 선정
___3.3.3. 추론기에 모델 포함하기
3.4 모델-인-이미지 패턴
___3.4.1. 유스케이스
___3.4.2. 해결하려는 과제
___3.4.3. 아키텍처
___3.4.4. 구현
___3.4.5. 이점
___3.4.6. 검토사항
3.5 모델 로드 패턴
___3.5.1. 유스케이스
___3.5.2. 해결하려는 과제
___3.5.3. 아키텍처
___3.5.4. 구현
___3.5.5. 이점
___3.5.6. 검토사항
3.6 모델의 배포와 스케일 아웃

▣ 4장: 추론 시스템 만들기
4.1 시스템을 만들어야 하는 이유
___4.1.1. 시작하기
___4.1.2. 머신러닝의 실용화
4.2 웹 싱글 패턴
___4.2.1. 유스케이스
___4.2.2. 해결하려는 과제
___4.2.3. 아키텍처
___4.2.4. 구현
___4.2.5. 이점
___4.2.6. 검토사항
4.3 동기 추론 패턴
___4.3.1. 유스케이스
___4.3.2. 해결하려는 과제
___4.3.3. 아키텍처
___4.3.4. 구현
___4.3.5. 이점
___4.3.6. 검토사항
4.4 비동기 추론 패턴
___4.4.1. 유스케이스
___4.4.2. 해결하려는 과제
___4.4.3. 아키텍처
___4.4.4. 구현
___4.4.5. 이점
___4.4.6. 검토사항
4.5 배치 추론 패턴
___4.5.1. 유스케이스
___4.5.2. 해결하려는 과제
___4.5.3. 아키텍처
___4.5.4. 구현
___4.5.5. 이점
___4.5.6. 검토사항
4.6 전처리ㆍ추론 패턴
___4.6.1. 유스케이스
___4.6.2. 해결하려는 과제
___4.6.3. 아키텍처
___4.6.4. 구현
___4.6.5. 이점
___4.6.6. 검토사항
4.7 직렬 마이크로서비스 패턴
___4.7.1. 유스케이스
___4.7.2. 해결하려는 과제
___4.7.3. 아키텍처
___4.7.4. 구현
___4.7.5. 이점
___4.7.6. 검토사항
4.8 병렬 마이크로서비스 패턴
___4.8.1. 유스케이스
___4.8.2. 해결하려는 과제
___4.8.3. 아키텍처
___4.8.4. 구현
___4.8.5. 이점
___4.8.6. 검토사항
4.9 시간차 추론 패턴
___4.9.1. 유스케이스
___4.9.2. 해결하려는 과제
___4.9.3. 아키텍처
___4.9.4. 구현
___4.9.5. 이점
___4.9.6. 검토사항
4.10 추론 캐시 패턴
___4.10.1. 유스케이스
___4.10.2. 해결하려는 과제
___4.10.3. 아키텍처
___4.10.4. 구현
___4.10.5. 이점
___4.10.6. 검토사항
4.11 데이터 캐시 패턴
___4.11.1. 유스케이스
___4.11.2. 해결하려는 과제
___4.11.3. 아키텍처
___4.11.4. 구현
___4.11.5. 이점
___4.11.6. 검토사항
4.12 추론기 템플릿 패턴
___4.12.1. 유스케이스
___4.12.3. 해결하려는 과제
___4.12.3. 아키텍처
___4.12.4. 구현
___4.12.5. 이점
___4.12.6. 검토사항
4.13 에지 AI 패턴
___4.13.1. 유스케이스
___4.13.2. 해결하려는 과제
___4.13.3. 아키텍처
___4.13.4. 구현
___4.13.5. 이점
___4.13.6. 검토사항
4.14 안티 패턴 (온라인 빅사이즈 패턴)
___4.14.1. 상황
___4.14.2. 구체적인 문제
___4.14.3. 이점
___4.14.4. 과제
___4.14.5. 회피 방법
4.15 안티 패턴 (올-인-원 패턴)
___4.15.1. 상황
___4.15.2. 구체적인 문제
___4.15.3. 이점
___4.15.4. 과제
___4.15.5. 회피 방법

[3부] 품질ㆍ운용ㆍ관리

▣ 5장: 머신러닝 시스템의 운용
5.1 머신러닝의 운용
5.2 추론 로그 패턴
___5.2.1. 유스케이스
___5.2.2. 해결하려는 과제
___5.2.3. 아키텍처
___5.2.4. 구현
___5.2.5. 이점
___5.2.6. 검토사항
5.3 추론 감시 패턴
___5.3.1. 유스케이스
___5.3.2. 해결하려는 과제
___5.3.2 아키텍처
___5.3.4. 구현
___5.3.5. 이점
___5.3.6. 검토사항
5.4 안티 패턴 (로그가 없는 패턴)
___5.4.1. 상황
___5.4.2. 구체적인 문제
___5.4.3. 이점
___5.4.4. 과제
___5.4.5. 회피 방법
5.5 안티 패턴 (‘그리고 아무도 없었다’ 패턴)
___5.5.1. 상황
___5.5.2. 구체적인 문제
___5.5.3. 이점
___5.5.4. 과제
___5.5.5. 회피 방법

▣ 6장: 머신러닝 시스템의 품질관리
6.1 머신러닝 시스템의 품질과 운용
6.2 머신러닝 시스템의 정상성 평가 지표
___6.2.1. 머신러닝의 정상성
___6.2.2. 소프트웨어의 정상성
6.3 부하 테스트 패턴
___6.3.1. 유스케이스
___6.3.2. 해결하려는 과제
___6.3.3. 아키텍처
___6.3.4. 구현
___6.3.5. 이점
___6.3.6. 검토사항
6.4 추론 서킷브레이커 패턴
___6.4.1. 유스케이스
___6.4.2. 해결하려는 과제
___6.4.3. 아키텍처
___6.4.4. 구현
___6.4.5. 이점
___6.4.6. 검토사항
6.5 섀도 A/B 테스트 패턴
___6.5.1. 유스케이스
___6.5.2. 해결하려는 과제
___6.5.3. 아키텍처
___6.5.4. 구현
___6.5.5. 이점
___6.5.6. 검토사항
6.6 온라인 A/B 테스트 패턴
___6.6.1. 유스케이스
___6.6.2. 해결하려는 과제
___6.6.3. 아키텍처
___6.6.4. 구현
___6.6.5. 이점
___6.6.6. 검토사항
6.7 파라미터 기반 추론 패턴
___6.7.1. 유스케이스
___6.7.2. 해결하려는 과제
___6.7.3. 아키텍처
___6.7.4. 구현
___6.7.5. 이점
___6.7.6. 검토사항
6.8 조건 분기 추론 패턴
___6.8.1. 유스케이스
___6.8.2. 해결하려는 과제
___6.8.3. 아키텍처
___6.8.4. 구현
___6.8.5. 이점
___6.8.6. 검토사항
6.9 안티 패턴 (오프라인 평가 패턴)
___6.9.1. 상황
___6.9.2. 구체적인 문제
___6.9.3. 이점
___6.9.4. 과제
___6.9.5. 회피 방법

▣ 7장: ML옵스 시스템의 End-to-End 설계
7.1 과제와 방법
___7.1.1. 머신러닝으로 해결 가능한 과제를 결정하기
___7.1.2. 머신러닝으로 해결 가능한지 검토하기
___7.1.3. 과제 해결 정도를 수치로 평가하기
___7.1.4. 머신러닝 시스템의 요건을 정의
___7.1.5. 머신러닝 모델 개발
___7.1.6. 평가 및 효과 검증
7.2 수요예측 시스템
___7.2.1. 상황과 요건
___7.2.2. 시스템 만들기
7.3 콘텐츠 업로드 서비스
___7.3.1. 상황과 요건
___7.3.2. 모델과 시스템
___7.3.3. 머신러닝 활용하기
___7.3.4. ML옵스
7.4 정리하기

Klover 리뷰 (0)

북로그 리뷰 (0) 쓰러가기

북로그 리뷰는 본인 인증 후 작성 가능합니다.
책이나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 내용은 비공개 처리 될 수 있습니다.
※ 북로그 리뷰 리워드 제공 2021. 4. 1 종료

문장수집 (0) 문장수집 쓰기 나의 독서기록 보기
※구매 후 문장수집 작성 시, 리워드를 제공합니다. 안내

교환/반품/품절안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품/품절안내
반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
[1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
    또는 고객센터 (1544-1900)
반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유
  • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
  • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
  • 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
  • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
  • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
    해당되는 경우
(1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①서양도서-판매정가의 12%, ②일본도서-판매정가의 7%를 적용)
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
이메일과 문자로 안내드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
  • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
    소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
  • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
    소비자 보호에 관한 법률에 따라 처리함
바로가기
  • 우측 확장형 배너 2
  • 우측 확장형 배너 2
최근 본 상품