본문내용 바로가기
MD의선택 무료배송 이벤트 소득공제

데이터 애널리틱스 예제로 배우는 모델링 기법, 데이터 분석, 모델 구축 과정

위키북스 데이터 사이언스 시리즈 61
이재식 지음 | 위키북스 | 2020년 09월 02일 출간
클로버 리뷰쓰기
  • 정가 : 35,000원
    판매가 : 31,500 [10%↓ 3,500원 할인]
  • 통합포인트 :
    [기본적립] 1,750원 적립 [5% 적립] [추가적립] 5만원 이상 구매 시 2천원 추가적립 안내 [회원혜택] 실버등급 이상, 3만원 이상 구매 시 2~4% 추가적립 안내
  • 추가혜택 : 포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 배송일정 : 서울특별시 종로구 세종대로 기준 지역변경
    당일배송 지금 주문하면 오늘(20일,수) 도착 예정 배송일정 안내
  • 바로드림 : 인터넷으로 주문하고 매장에서 직접 수령 안내 바로드림 혜택
    휴일에는 바로드림 픽업으로 더 빨리 받아 보세요. 바로드림 혜택받고 이용하기

이 책의 이벤트 해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.

  • 책을 통해 성장해나가는 개발자를 응원합니다.
    2017.06.22 ~ 2025.07.31
상품상세정보
ISBN 9791158391737(1158391730)
쪽수 536쪽
크기 187 * 239 * 31 mm /1147g 판형알림

책소개

이 책이 속한 분야

데이터 애널리틱스는 데이터로부터 유용한 정보와 지식을 도출하기 위한 모델링 기법들, 그 기법들로 데이터를 분석하는 과정, 그리고 신뢰할 수 있는 방법과 원칙에 입각하여 모델을 구축하는 과정 전반을 일컫는 용어다. 이 책은 데이터 애널리틱스에 대한 모든 주제를 상세한 예제 풀이를 통하여 설명한다. 모델링 기법에 대한 이론 및 모델의 구축 과정에 대한 설명을 간단한 예제의 데이터 분석으로부터 시작해서 복잡한 예제로 끝을 맺는다. 따라서 데이터 애널리틱스를 처음 접하는 독자는 이 책을 통해서 데이터 애널리틱스에 입문할 수 있고, 데이터 애널리틱스를 전공하는 독자는 자신의 지식을 심화시킬 수 있다. 각 모델링 기법에 대한 설명 후에는 R 및 R-텐서플로를 사용해서 데이터를 분석하고 모델을 구축하는 프로그램이 수록되어 있어서 직접 실습 경험을 쌓을 수 있다.

상세이미지

데이터 애널리틱스(위키북스 데이터 사이언스 시리즈 61) 도서 상세이미지

목차

[01부] 기본 개념

▣ 01장: 서론
1. 인공지능, 머신러닝, 딥러닝
2. 데이터 사이언스와 데이터 애널리틱스
3. 데이터 마이닝과 데이터 애널리틱스
4. 이 책의 구성
5. 참고문헌

▣ 02장: 데이터 마이닝
1. 데이터, 정보, 지식
2. 데이터의 속성
____2.1 범주형 속성
____2.2 수치형 속성
____2.3 기타 속성
3. 데이터 마이닝의 탄생
4. 데이터 마이닝의 정의
____4.1 비즈니스 프로세스
____4.2 대량의 데이터
____4.3 의미 있는 패턴과 규칙
5. 데이터 마이닝의 유형
____5.1 가설 검정
____5.2 방향성 데이터 마이닝
____5.3 무방향성 데이터 마이닝
6. 데이터 마이닝의 단계
____6.1 KDD2.0
____6.2 CRISP-DM
____6.3 두 방법론의 비교
7. 참고문헌

▣ 03장: 머신러닝
1. 문제를 푸는 방법
2. 머신러닝의 정의
3. 머신러닝의 유형
____3.1 지도 학습
____3.2 비지도 학습
____3.3 준지도 학습
____3.4 강화 학습
4. 머신러닝의 기법들
____4.1 지도 학습 기법
____4.2 비지도 학습 기법
____4.3 준지도 학습 기법
____4.4 강화 학습 기법
5. 참고문헌

▣ 04장: 모델 구축
1. 모델의 정의
2. 모델의 구축 과정
____2.1 훈련 데이터 집합의 용도
____2.2 과대적합의 발생
____2.3 검증 데이터 집합의 용도
____2.4 테스트 데이터 집합의 용도
____2.5 스코어 데이터 집합의 용도
3. 편향되지 않은 모델의 구축
____3.1 반복적 무작위 서브샘플링 검증 방법
____3.2 K-폴드 교차 검증 방법
____3.3 단일 관측값 제거 교차 검증 방법
____3.4 부트스트랩 방법
4. 모델의 평가
____4.1 회귀 평가 척도
____4.2 분류 평가 척도
5. 편향과 편차 간의 상충 관계
____5.1 훈련 데이터 집합의 평균으로 만든 모델
____5.2 선형 회귀 모델
____5.3 2차 다항 회귀 모델
____5.4 6차 다항 회귀 모델
____5.5 네 개 모델의 비교
6. 과대적합의 방지 또는 제거
____6.1 속성 선정
____6.2 균등화
____6.3 조기 종료
____6.4 드롭아웃과 배치 정규화
____6.5 가지치기
____6.6 앙상블 방법
7. 모델 데이터 집합
____7.1 모델 데이터 집합의 크기와 밀도
____7.2 오버샘플링
____7.3 결측값
8. 모델의 비교 및 선정
____8.1 ROC 곡선의 비교
____8.2 통계적 검정에 의한 비교
9. 앙상블 방법에 의한 모델의 성능 향상
____9.1 앙상블 방법
____9.2 배깅 방법
____9.3 부스팅 방법
10. 참고문헌

[02부] 통계학 기반 기법

▣ 05장: 회귀분석
1. 회귀 분석
2. 단순 회귀 분석
____2.1 베타햇 값 구하기: 최소자승법
____2.2 결정계수 R2
____2.3 단순 회귀 분석의 예제
3. 다중 회귀 분석
____3.1 다중 회귀 분석의 예제
____3.2 단계별 회귀 분석
____3.3 조정된 결정계수
4. 다중 회귀 분석을 이용한 자동차 연비 추정
____4.1 A_Model: 모든 변수를 사용한 모델
____4.2 F_Model: 전방향 선택으로 선택한 변수를 사용한 모델
____4.3 B_Model: 역방향 제거로 선택한 변수를 사용한 모델
____4.4 S_Model: 양방향 선택과 제거로 선택한 변수를 사용한 모델
____4.5 P_Model: Pr(〉|t|)가 유의한 변수를 사용한 모델
____4.6 최종 모델의 선정
5. 참고문헌

▣ 06장: 로지스틱 회귀 분석
1. 로지스틱 회귀 분석
2. 이진형 문제의 선형 회귀 모델
3. 이진형 문제의 로지스틱 회귀 모델
4. 로지스틱 회귀 분석을 이용한 잡지 구독 예측
____4.1 A_loModel: 모든 변수를 사용한 모델
____4.2 S_loModel: 양방향 선택과 제거로 선택한 변수를 사용한 모델
____4.3 P_loModel: Pr(〉|z|)가 유의한 변수를 사용한 모델
____4.4 최종 모델의 선정
5. 참고문헌

▣ 07장: 선형 판별 분석
1. 선형 판별 분석
2. 선형 판별 분석 방법
____2.1 중심과의 거리를 이용하는 방법
____2.2 회귀를 이용하는 방법
____2.3 피셔의 선형 판별 방법
3. 선형 판별 분석을 이용한 대출 결정
4. 참고문헌

▣ 08장: 베이즈 분류기
1. 베이즈 분류기
2. 베이즈 정리
3. 베이즈 분류기의 이해
4. 베이즈 분류기의 예제
____4.1 수치형 변수가 없는 경우: 예제 8.1
____4.2 구매 여부 개수가 0일 경우
____4.3 수치형 변수가 있는 경우: 예제 8.2
5. 베이즈 분류기를 이용한 스팸 메일 판정
6. 참고문헌

[03부] 머신러닝 기반 기법

▣ 09장: 군집 분석
1. 군집 분석
2. 군집의 의미
3. 근접성
____3.1 수치형 속성
____3.2 범주형 속성
____3.3 군집 간의 거리 측정
4. 클러스터링 결과의 평가 척도
5. 클러스터링을 위한 데이터 준비
____5.1 속성값 조정
____5.2 가중치 부여
6. 계층적 클러스터링: 예제 9.1
____6.1 병합적 클러스터링
____6.2 분할적 클러스터링
____6.3 클러스터링 결과의 평가
7. K-평균 클러스터링
____7.1 K-평균 클러스터링의 단계
____7.2 K-평균 클러스터링: 예제 9.2
____7.3 초기 무작위 중심의 선택
____7.4 K값의 설정
8. K-평균 클러스터링을 이용한 피교육자 군집 분석
9. 참고문헌

▣ 10장: 연관 분석
1. 연관 분석
2. 연관 규칙
3. 연관 규칙의 도출 과정
____3.1 아이템의 상세화 수준 결정
____3.2 거래 데이터로부터 아이템집합 생성
____3.3 아이템집합이 판매된 거래 건수와 확률 산출
____3.4 아이템집합 가지치기
____3.5 연관 규칙 생성
____3.6 생성된 연관 규칙 평가
4. 연관 규칙 도출 연습
5. 연관 분석을 이용한 시장바구니 분석
6. 순차 패턴 분석
7. 유용한 순차 패턴의 발견
8. 순차 패턴 분석을 이용한 제품 구매 순서 분석
9. 참고문헌

▣ 11장: 의사결정 트리
1. 의사결정 트리
2. 의사결정 트리의 용도
____2.1 분류
____2.2 점수 부여
____2.3 추산
3. 의사결정 트리의 형태
4. 의사결정 트리의 구축
____4.1 기본 과정
____4.2 분지
____4.3 의사결정 트리의 구축 단계
____4.4 의사결정 트리의 평가
____4.5 의사결정 트리에서 규칙의 추출
5. 최상 분지 속성의 선정
____5.1 분지 속성 선정의 중요성
____5.2 최상 분지 속성의 선정 기준
____5.3 최상 분지 속성의 선정 과정
6. 의사결정 트리 구축 과정의 예제
____6.1 엔트로피 분지 방법
____6.2 지니 분지 방법
7. 의사결정 트리의 가지치기
____7.1 가지치기의 필요성
____7.2 오류 감소 가지치기
8. 의사결정 트리를 이용한 개인 신용 평가
9. 참고문헌

▣ 12장: 랜덤 포레스트
1. 랜덤 트리
2. 랜덤 포레스트
3. 랜덤 포레스트를 이용한 고객 이탈 예측
4. 참고문헌

▣ 13장: 새로운 회귀 분석 기법들
1. 균등화된 회귀 분석
____1.1 균등화
____1.2 균등화된 회귀 분석의 유형
____1.3 엑셀을 사용한 균등화된 회귀 분석
2. 균등화된 회귀 분석을 이용한 자동차 연비 추정
3. 베타햇 값 구하기: 기울기 하강법
4. 기울기 하강법을 이용한 회귀 모델 구축
____4.1 R을 사용한 기울기 하강법
____4.2 텐서플로를 사용한 기울기 하강법
5. 참고문헌

▣ 14장: 서포트 벡터 머신
1. 서포트 벡터 머신
2. 서포트 벡터 머신의 이해
3. 서포트 벡터 머신의 최적화 문제 수식화
4. 엑셀을 사용한 서포트 벡터 머신: 예제 14.1
5. 선형 분리 불가능 문제: 여유 변수의 도입
____5.1 여유 변수를 도입한 SVM의 최적화 문제 수식
____5.2 엑셀을 사용한 SVM: 예제 14.2
____5.3 균등화 파라미터
6. 선형 분리 불가능 문제: 커널 트릭의 사용
____6.1 엑셀을 사용한 SVM: 예제 14.3
____6.2 커널 함수
____6.3 엑셀을 사용한 SVM: 예제 14.4
7. 서포트 벡터 머신을 이용한 유방암 판정
8. 참고문헌

▣ 15장: 인공 신경망
1. 인공 신경망
2. 인공 신경망의 구성
____2.1 처리 요소
____2.2 처리 요소의 입력과 출력
____2.3 처리 요소의 결합과 계층의 결합
____2.4 가중치와 활성 함수
____2.5 학습 기능
3. 역전파 알고리즘
____3.1 전방향 단계
____3.2 역방향 단계
____3.3 역전파 알고리즘의 과정: 예제 15.1
____3.4 가중치 수정의 빈도
4. 활성 함수
5. 비선형 분류
6. XOR 문제를 푸는 인공 신경망: 예제 15.2
7. 범주형 속성의 인코딩
____7.1 N개-중-1개 인코딩
____7.2 N개-중-M개 인코딩
____7.3 온도계 인코딩
8. 인공 신경망을 이용한 심장질환 판정
9. 참고문헌

▣ 16장: 딥러닝
1. 딥러닝의 개요
____1.1 기울기 소실 현상
____1.2 기울기 소실 현상의 극복
____1.3 과대적합의 방지
2. 심층 신경망
____2.1 심층 신경망을 이용한 동물 유형 판정
3. 합성곱 신경망
____3.1 합성곱 계층
____3.2 풀링 계층
____3.3 합성곱 신경망의 차원 계산
____3.4 합성곱 신경망을 이용한 필기체 숫자 판독
4. 순환 신경망
____4.1 순환 신경망 구조의 유형
____4.2 초기 순환 신경망 모델의 단점 극복
____4.3 순환 신경망을 이용한 문장 예측
____4.4 순환 신경망을 이용한 감성 분석
5. 참고문헌

▣ 부록A: R 설치하기
▣ 부록B: R Studio 설치하기
▣ 부록C: Anaconda, R, R Studio, Tensorflow 설치하기
▣ 부록D: R 환경의 Tensorflow 2.0 버전 코드

Klover 리뷰 (0)

북로그 리뷰 (0) 쓰러가기

도서 구매 후 리뷰를 작성하시면
결제 90일 이내 300원, 발송 후 5일 이내 400원, 이 상품의 첫 리뷰 500원의 포인트를 드립니다.

포인트는 작성 후 다음 날 적립되며, 도서 발송 전 작성 시에는 발송 후 익일에 적립됩니다.
북로그 리뷰는 본인인증을 거친 회원만 작성 가능합니다.
(※ 외서/eBook/음반/DVD/GIFT 및 잡지 상품 제외) 안내
  • 해당도서의 리뷰가 없습니다.

문장수집 (0) 문장수집 쓰기 나의 독서기록 보기
※구매도서의 문장수집을 기록하면 통합포인트 적립 안내

교환/반품/품절안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품/품절안내
반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
[1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
    또는 고객센터 (1544-1900)
반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유
  • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
  • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
  • 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
  • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
  • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
    해당되는 경우
(1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①서양도서-판매정가의 12%, ②일본도서-판매정가의 7%를 적용)
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
이메일과 문자로 안내드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
  • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
    소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
  • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
    소비자 보호에 관한 법률에 따라 처리함

바로가기

  • 우측 확장형 배너 2
  • 우측 확장형 배너 2

최근 본 상품