본문내용 바로가기
MD의선택 무료배송 이벤트 사은품 소득공제

파이썬을 이용한 머신러닝, 딥러닝 실전 앱 개발 실무에서 즉시 활용 가능한 머신러닝, 딥러닝 실전 앱 개발

위키북스 데이터 사이언스 시리즈 32
클로버 리뷰쓰기
  • 정가 : 27,000원
    판매가 : 24,300 [10%↓ 2,700원 할인]
  • 통합포인트 :
    [기본적립] 1,350원 적립 [5% 적립] [추가적립] 5만원 이상 구매 시 2천원 추가적립 안내 [회원혜택] 실버등급 이상, 3만원 이상 구매 시 2~4% 추가적립 안내
  • 추가혜택 : 포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 배송일정 : 서울특별시 종로구 세종대로 기준 지역변경
    당일배송 지금 주문하면 오늘( 1일,화) 도착 예정 배송일정 안내
  • 바로드림 : 인터넷으로 주문하고 매장에서 직접 수령 안내 바로드림 혜택
    휴일에는 바로드림 픽업으로 더 빨리 받아 보세요. 바로드림 혜택받고 이용하기

이 책의 이벤트 해외주문/바로드림/제휴사주문/업체배송건의 경우 1+1 증정상품이 발송되지 않습니다.

  • 행사도서 포함 3만원 이상 구매 시 2021 캘린더 노트 선택가..
    2020.11.09 ~ 2020.12.09
  • 개발자로 입문하기: 일단 이것부터 읽어보자!
    2019.05.31 ~ 2020.12.31
  • 위키북스의 도서를 한 눈에 살펴보세요
    2017.11.23 ~ 2020.12.31
  • 책을 통해 성장해나가는 개발자를 응원합니다.
    2017.06.22 ~ 2025.07.31
  • 새로운 파이썬 책을 발견해보세요! 전체 목록 다운로드 제공!
    2016.08.11 ~ 2021.12.31
상품상세정보
ISBN 9791158391478(1158391471)
쪽수 356쪽
크기 190 * 245 * 24 mm /800g 판형알림
원서명/저자명 すぐに使える!業務で實踐できる!PYTHONによるAI.機械學習.深層學習アプリのつくり方/クジラ飛行机

책소개

이 책이 속한 분야

최근에는 머신러닝/딥러닝 환경을 갖추기만 하면, 누구라도 쉽게 머신러닝/딥러닝을 할 수 있게 되었습니다. 그래서 다양한 서비스와 애플리케이션에서 머신러닝을 활용하는 경우를 볼 수 있습니다.

이 책은 《파이썬으로 배우는 머신러닝 딥러닝 실전 개발 입문》의 활용편으로, 이전 책에서는 데이터를 수집하는 스크레이핑부터 기본적인 머신러닝 딥러닝을 다루었다면, 이번 《파이썬을 이용한 머신러닝, 딥러닝 실전 앱 개발》에서는 기본적인 머신러닝 딥러닝부터 좀 더 실용적인 머신러닝 딥러닝 예제를 다룹니다.

머신러닝/딥러닝은 깊게 들어가면 들어 갈수록 정말 넓은 분야입니다. 일단 머신러닝과 딥러닝이 무엇인지 이 책에서 다루는 다양한 예제로 체험해보기 바랍니다.

목차

▣ 01장: 머신러닝과 딥러닝
1-1. 머신러닝
__머신러닝이란?
__머신러닝으로 할 수 있는 것
__구체적으로 머신러닝을 어떻게 적용할 수 있을까?
__딥러닝이란?
__머신러닝이 실용화된 이유
__머신러닝의 구조
__머신러닝의 종류
1-2. 머신러닝 과정 시나리오
__머신러닝 과정 시나리오
__머신러닝의 기본 과정
1-3. 머신러닝에서 사용할 데이터 만드는 방법
__무엇을 위해 머신러닝을 사용하는가?
__어떻게 데이터를 수집할까?
__수집한 데이터를 저장하는 형식
__입력에 사용하는 데이터
__데이터 정규화
1-4. 설치가 필요 없는 Colaboratory
__Google Colaboratory
__Colaboratory의 제약
__Colaboratory의 기본 사용 방법
__응용 힌트
1-5. Jupyter Notebook 사용 방법
__Jupyter Notebook이란?
__Jupyter Notebook 실행하기
__신규 노트북 만들고 실행하기
__노트북에 셀을 여러 개 만들기
__값을 그래프로 출력하기
__마크다운 기법으로 문서 만들기
1-6. 개별적으로 프로그램을 실행하는 방법
__명령 라인이란?
__프로그램 실행하기
__모듈 설치하고 사용하기

▣ 02장: 머신러닝 입문
2-1. 가장 간단한 머신러닝 예
__scikit-learn에 대해
__머신러닝으로 AND 연산 해보기
__개선 힌트
2-2. 붓꽃 분류하기
__붓꽃 데이터 내려받기
__붓꽃 데이터를 사용해 머신러닝 하기
__추가 설명: scikit-learn의 샘플에도 들어 있는 붓꽃 데이터
__응용 힌트
2-3. AI로 맛있는 와인 판정하기
__와인의 품질을 머신러닝으로 분류하기
__와인 데이터 내려받기
__와인 데이터 살펴보기
__와인 품질 판정하기
__정답률 올리기
2-4. 과거 10년 동안의 기상 데이터 분석하기
__기상 데이터 사용하기
__과거 10년 동안의 기상 데이터를 얻는 방법
__기온 평균 구하기
__월별 평균 기온 구하기
__기온이 30도 넘는 날 구하기 - Pandas 필터
__회귀 분석으로 내일 기온 예측하기
2-5. 최적의 알고리즘과 매개변수 찾기
__응용 힌트
__최적의 알고리즘 찾기
__최적의 매개변수 찾기
__개선 힌트

▣ 03장: OpenCV와 머신러닝 - 이미지/동영상 입문
3-1. OpenCV
__OpenCV
__이미지 읽어 들이기
3-2. 얼굴 검출 - 자동으로 얼굴에 모자이크 처리하기
__얼굴 인식
__얼굴 검출 프로그램 만들기
__OpenCV로 모자이크 처리하기
__사람 얼굴에 자동으로 모자이크 처리하기
__OpenCV의 얼굴 검출은 옆모습과 기울어진 얼굴을 잘 검출하지 못함
__개선?응용 힌트
3-3. 문자 인식 - 손글씨 숫자 판정하기
__손글씨 숫자 광학 인식 데이터세트 사용하기
__이미지 머신러닝하기
__자신이 작성한 이미지 판별하기
__이미지를 대상으로 하는 머신러닝
__개선 힌트
3-4. 윤곽 검출 - 엽서의 우편 번호 인식하기
__엽서의 우편 번호 인식하기
__OpenCV로 윤곽 검출하기
__엽서에서 우편 번호 영역 검출하기
__추출한 숫자 이미지 판정하기
__개선 힌트
__응용 힌트
3-5. 동영상 분석 - 동영상에서 열대어가 등장하는 부분 검출하기
__동영상 분석
__화면에 움직임이 있는 부분 추출하기
__이미지 파일 쓰기
__동영상에서 열대어가 나오는 부분 검출하기
__머신러닝으로 동영상에서 열대어가 많이 나오는 부분 찾기
__개선 힌트
__응용 힌트

▣ 04장: 자연어 처리하기
4-1. 언어 판정하기
__언어 판정
__머신러닝으로 언어 판정 해보기
4-2. 문장을 단어로 분할하기
__형태소 분석
4-3. 단어의 의미를 벡터로 만들기
__단어 벡터
__단어의 의미를 벡터로 만들기
__응용 힌트

▣ 05장: 딥러닝
5-1. 딥러닝(심층학습)
__딥러닝이란?
5-2. TensorFlow 입문
__TensorFlow란?
__TensorFlow 설치와 동작 확인하기
__TensorFlow 데이터 플로 그래프
5-3. TensorFlow로 붓꽃 분류하기
__붓꽃 분류 문제 복습하기
__Keras로 가는 길
__MNIST 데이터 사용하기
5-4. 딥러닝으로 손글씨 숫자 판정하기
__굉장히 간단한 신경망으로 MNIST 분류하기
__MLP를 사용해 MNIST 분류 문제 풀기
__개선 힌트
5-5. 사진에 찍힌 물체 인식하기
__CIFAR-10이란?
__CIFAR-10 내려받기
__CIFAR-10 분류 문제를 MLP로 풀기
__CIFAR-10 분류 문제를 CNN으로 풀어보기
__학습 결과 저장하기
__응용 힌트
5-6. 이미지 데이터로 일본어 가타카나 판정하기
__머신러닝의 입력과 출력
__이미지 학습시키기 - 이미지 리사이즈

▣ 06장: 머신러닝으로 업무 효율화하기
6-1. 업무 시스템에 머신러닝 적용하기
__기존의 업무 시스템
__업무 시스템에 머신러닝 도입하기
6-2. 학습 모델을 저장하고 읽어 들이는 방법
__학습한 학습기를 저장하고 다시 사용하는 방법
6-3. 뉴스 기사의 카테고리 판정하기
__뉴스 기사 자동 분류
__TF-IDF
__딥러닝으로 정답률 개선하기
__직접 문장을 지정해 판정하기
__개선 힌트
6-4. 웹에서 사용할 수 있는 뉴스 카테고리 판정 애플리케이션 만들기
__머신러닝을 웹 애플리케이션에서 사용하는 방법
__웹 애플리케이션에서 카테고리를 분류하는 모델 사용하기
__API를 호출하는 웹 애플리케이션 만들기
__개선 힌트
6-5. 머신러닝에 데이터베이스(RDBMS) 사용하기
__데이터베이스를 기반으로 데이터를 학습시키는 방법
__데이터베이스에서 직접 머신러닝 시스템에 데이터 전달하기
__키와 체중 데이터베이스 만들기
__키, 체중, 체형 학습하기
__개선 힌트
__응용 힌트
6-6. 요리 사진을 기반으로 칼로리를 알려주는 프로그램 만들기
__요리 사진 판정 방법
__Flickr API를 사용해 사진 수집하기
__직접 찍은 사진으로 테스트하기
__개선 힌트

▣ 부록: 이 책의 예제를 실습하기 위한 환경 준비하기
__Python과 머신러닝 환경 준비하기
__Windows에 환경 구축하기
__macOS에 개발 환경 구축하기
__Docker 설치하기
__언어 처리 라이브러리

출판사 서평

★ 이 책에서 다루는 내용 ★

- 맛있는 와인 판정하기, 얼굴에 모자이크 처리하기, 손글씨 숫자 판정하기, 우편 번호를 자동으로 인식하기, 동영상에서 특정 장면 추출하기
- 문장을 형태소로 분할하기, 단어의 의미를 벡터로 만들기, 문장 분류하기
- 사진 속의 물체 인식하기, 뉴스 기사 카테고리 분류하기, 요리 사진을 기반으로 칼로리 확인하기

Klover 리뷰 (0)

북로그 리뷰 (1) 전체보기 쓰러가기

도서 구매 후 리뷰를 작성하시면
결제 90일 이내 300원, 발송 후 5일 이내 400원, 이 상품의 첫 리뷰 500원의 포인트를 드립니다.

포인트는 작성 후 다음 날 적립되며, 도서 발송 전 작성 시에는 발송 후 익일에 적립됩니다.
북로그 리뷰는 본인인증을 거친 회원만 작성 가능합니다.
(※ 외서/eBook/음반/DVD/GIFT 및 잡지 상품 제외) 안내
  • 성의 없는 번역과 내용 wm**ss | 2019-04-06 | 추천: 0 | 5점 만점에 2점 구매
    책 원서 내용에 대한 평가는 뒤로하고,  번역자의 성의가 없음.  단도직입적으로 5-6장에 있는   '일본어 가타카나 판정하기'  이거 있는 그대로 번역만 했을 뿐. 이 책을 볼 사람은 한글을 사용하는 한국 사람인데  가타카나 판정기 이런 걸 보고 싶겠는가??   우리 나라 말로 번역을 하는거면 최소한  이 부분의 내용을 '한글 판정하기' 로 바꾸어 줘야하는 것이 아닌가 싶음. 다른 책들을 보면 이러한 부분이 있으면 우리 설정에 맞게 원저자와 ... 더보기

문장수집 (0) 문장수집 쓰기 나의 독서기록 보기
※구매도서의 문장수집을 기록하면 통합포인트 적립 안내

교환/반품/품절안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품/품절안내
반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
[1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
    또는 고객센터 (1544-1900)
반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유
  • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
  • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
  • 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
  • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
  • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
    해당되는 경우
(1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①서양도서-판매정가의 12%, ②일본도서-판매정가의 7%를 적용)
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
이메일과 문자로 안내드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
  • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
    소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
  • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
    소비자 보호에 관한 법률에 따라 처리함

바로가기

  • 우측 확장형 배너 2
  • 우측 확장형 배너 2

최근 본 상품