º»¹®³»¿ë ¹Ù·Î°¡±â
¹«·á¹è¼Û ¼Òµæ°øÁ¦

ÇØ¿ÜÁÖ¹® [POD] Big Data and Deep Learning. Examples with MATLAB

Paperback
Perez, C. ÁöÀ½ | Lulu.com | 2020³â 05¿ù 31ÀÏ
  • Á¤°¡ : 39,890¿ø
    ÆÇ¸Å°¡ : 35,500¿ø [11%¡é 4,390¿ø ÇÒÀÎ] ÇÒÀÎÄíÆù ¹Þ±â
  • ÅëÇÕÆ÷ÀÎÆ® :
    [±âº»Àû¸³] 360¿ø Àû¸³ [1% Àû¸³] [Ãß°¡Àû¸³] 5¸¸¿ø ÀÌ»ó ±¸¸Å ½Ã 2õ¿ø Ãß°¡Àû¸³ ¾È³» [ȸ¿øÇýÅÃ] ½Ç¹öµî±Þ ÀÌ»ó, 3¸¸¿ø ÀÌ»ó ±¸¸Å ½Ã 2~4% Ãß°¡Àû¸³ ¾È³»
  • Ãß°¡ÇýÅà : µµ¼­¼Òµæ°øÁ¦ ¾È³» Ãß°¡ÇýÅà ´õº¸±â
  • ¹è¼Ûºñ : ¹«·á ¹è¼Ûºñ ¾È³»
  • [¹è¼ÛÀÏÁ¤] ±Ù¹«ÀÏ ±âÁØ 7ÀÏ À̳» Ãâ°í ¿¹Á¤ ¹è¼ÛÀÏÁ¤ ¾È³»
    ÇØ¿ÜÁÖ¹®µµ¼­´Â ÇØ¿Ü °Å·¡Ã³ »çÁ¤¿¡ ÀÇÇØ ǰÀý/Áö¿¬µÉ¼ö ÀÖ½À´Ï´Ù.
    ½ºÆä¼È¿À´õ µµ¼­³ª Àϼ­ÇØ¿ÜÁÖ¹®µµ¼­¿Í ÇÔ²² ÁÖ¹®½Ã ¹è¼ÛÀÏÀÌ ÀÌ¿¡ ¸ÂÃß¾î Áö¿¬µÇ¿À´Ï, ÀÌÁ¡ À¯ÀÇÇØÁֽñ⠹ٶø´Ï´Ù.

¾Ë¸³´Ï´Ù.

  • ÀÌ µµ¼­´ÂPOD»óǰÀÔ´Ï´Ù. ÁÖ¹® ÈÄ¿¡´Â µµ¼­»óÅ ºÒ·® ¹× ÆÄ¼Õ µîÀÇ »çÀ¯·Î ÁÖ¹®Ãë¼Ò/¹ÝǰÀÌ ºÒ°¡´ÉÇÕ´Ï´Ù.
    POD: µµ¼­¸¦ ÀüÀÚÆÄÀÏ·Î º¸À¯, ÁÖ¹®½Ã Ã¥ÀÇ ÇüÅ·ΠÀμâ/Á¦º»ÇÑ µµ¼­, ¿À¸®Áö³¯ µµ¼­¿Í Â÷À̰¡ ÀÖÀ» ¼ö ÀÖ½À´Ï´Ù.
  • ÇØ¿ÜÁÖ¹®µµ¼­´Â °í°´´ÔÀÇ ¿äû¿¡ ÀÇÇØ ÁÖ¹®ÇÏ´Â '°³ÀÎ ¿À´õ' »óǰÀ̱⠶§¹®¿¡, ´Ü¼øÇÑ °í°´º¯½É/Âø¿À·Î ÀÎÇÑ Ãë¼Ò,¹Ýǰ, ±³È¯ÀÇ °æ¿ì 'ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á'¸¦ ºÎ´ãÇÏ¼Å¾ß ÇÕ´Ï´Ù. ÀÌÁ¡ À¯ÀÇÇÏ¿© Áֽñ⠹ٶø´Ï´Ù. ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á : (1)¼­¾çµµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 12%, (2)ÀϺ»µµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 7% (¹Ýǰ/Ãë¼Ò ¼ö¼ö·á´Â, ¼öÀÔÁ¦¹Ýºñ¿ë(FedEx¼ö¼Ûºñ¿ë, °ü¼¼»çºñ, º¸¼¼Ã¢°í·á, ³»·ú ¿î¼Ûºñ, Åë°üºñ µî)°ú Àç°í¸®½ºÅ©(¹ÌÆÇ¸Å ¸®½ºÅ©, ȯÂ÷¼Õ)¿¡ µû¸¥ ºñ¿ëÀ» Æ÷ÇÔÇϸç, ¼­¾çµµ¼­´Â ÆÇ¸ÅÁ¤°¡ÀÇ 12%, ÀϺ»µµ¼­´Â ÆÇ¸ÅÁ¤°¡ÀÇ 7%°¡ Àû¿ëµË´Ï´Ù.)
  • ¿Ü±¹µµ¼­ÀÇ °æ¿ì ÇØ¿ÜÁ¦°øÁ¤º¸·Î¸¸ ¼­ºñ½ºµÇ¾î ¹ÌÇ¥±âµÈ Á¤º¸°¡ ÀÖÀ» ¼ö ÀÖ½À´Ï´Ù. ÇÊ¿äÇÑ Á¤º¸°¡ ÀÖÀ»°æ¿ì 1:1 ¹®ÀÇ°Ô½ÃÆÇ À» ÀÌ¿ëÇÏ¿© ÁֽʽÿÀ.
»óǰ»ó¼¼Á¤º¸
ISBN 9781716877568(1716877563)
Âʼö 328ÂÊ
¾ð¾î English
Å©±â 210 * 297 * 18 (mm)
Á¦º»ÇüÅ Paperback
ÃѱǼö 1±Ç

Ã¥¼Ò°³

ÀÌ Ã¥ÀÌ ¼ÓÇÑ ºÐ¾ß

ÀÌ Ã¥ÀÇ ÁÖÁ¦¾î

Big Data Analytics examines large amounts of data to uncover hidden patterns, correlations and other insights. With today's technology, it's possible to analyze your data and get answers from it almost immediately - an effort that's slower and less efficient with more traditional business intelligence solutions. Deep learning (also known as deep structured learning, hierarchical learning or deep machine learning) is a branch of machine learning based on a set of algorithms that attempt to model high level abstractions in data. Various deep learning architectures such as deep neural networks, convolutional deep neural networks, deep belief networks and recurrent neural networks have been applied to fields like computer vision, automatic speech recognition, natural language processing, audio recognition and bioinformatics where they have been shown to produce state-of-the-art results on various tasks.Deep learning has been characterized as a buzzword, or a rebranding of neural networks. This book deeps in big data and deep learning techniques
ÀÌ Ã¥ÀÇ »óǰ±¸¼º
* ÇØ´ç »óǰÀÇ »ó¼¼±¸¼ºÁ¤º¸¸¦ ÁغñÁßÀÔ´Ï´Ù.

°£´Ü¸®ºä (0)

µµ¼­ ±¸¸Å ÈÄ ¸®ºä¸¦ ÀÛ¼ºÇϽøé ÅëÇÕÆ÷ÀÎÆ®¸¦ µå¸³´Ï´Ù.
°áÁ¦ 90ÀÏ À̳» ÀÛ¼º ½Ã 50¿ø / ¹ß¼Û ÈÄ 5ÀÏ À̳» ÀÛ¼º ½Ã 100¿ø
(Æ÷ÀÎÆ®´Â ÀÛ¼º ÈÄ ´ÙÀ½ ³¯ Àû¸³µÇ¸ç, µµ¼­ ¹ß¼Û Àü ÀÛ¼º ½Ã¿¡´Â ¹ß¼Û ÈÄ ÀÍÀÏ¿¡ Àû¸³µË´Ï´Ù.
¿Ü¼­/eBook/À½¹Ý/DVD/GIFT ¹× ÀâÁö »óǰ Á¦¿Ü) ¾È³»
0/1000ÀÚ
ÄÁÅÙÃ÷Æò°¡
5Á¡ ¸¸Á¡¿¡
0Á¡ 1Á¡ 2Á¡ 3Á¡ 4Á¡ 5Á¡
À̹ÌÁö÷ºÎ
(ÆÄÀϿ뷮Àº 1MB ÀÌÇÏÀ̸ç, ÆÄÀÏÇü½ÄÀº jpg, jpeg ÆÄÀϸ¸ ¾÷·Îµå °¡´ÉÇÕ´Ï´Ù.)

    ±³È¯/¹Ýǰ/ǰÀý¾È³»

    ¡Ø »óǰ ¼³¸í¿¡ ¹Ýǰ/±³È¯ °ü·ÃÇÑ ¾È³»°¡ ÀÖ´Â °æ¿ì ±× ³»¿ëÀ» ¿ì¼±À¸·Î ÇÕ´Ï´Ù. (¾÷ü »çÁ¤¿¡ µû¶ó ´Þ¶óÁú ¼ö ÀÖ½À´Ï´Ù.)

    ±³È¯/¹Ýǰ/ǰÀý¾È³»
    ¹Ýǰ/±³È¯¹æ¹ý ¸¶ÀÌ·ë > ÁÖ¹®°ü¸® > ÁÖ¹®/¹è¼Û³»¿ª > ÁÖ¹®Á¶È¸ > ¹Ýǰ/±³È¯½Åû ,
    [1:1»ó´ã>¹Ýǰ/±³È¯/ȯºÒ] ¶Ç´Â °í°´¼¾ÅÍ (1544-1900)

    ¡Ø ¿ÀǸ¶ÄÏ, ÇØ¿Ü¹è¼ÛÁÖ¹®, ±âÇÁÆ® ÁÖ¹®½Ã [1:1»ó´ã>¹Ýǰ/±³È¯/ȯºÒ]
        ¶Ç´Â °í°´¼¾ÅÍ (1544-1900)
    ¹Ýǰ/±³È¯°¡´É ±â°£ º¯½É¹ÝǰÀÇ °æ¿ì ¼ö·É ÈÄ 7ÀÏ À̳»,
    »óǰÀÇ °áÇÔ ¹× °è¾à³»¿ë°ú ´Ù¸¦ °æ¿ì ¹®Á¦Á¡ ¹ß°ß ÈÄ 30ÀÏ À̳»
    ¹Ýǰ/±³È¯ºñ¿ë º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹Ýǰ/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã
    ¹Ýǰ/±³È¯ ºÒ°¡ »çÀ¯
    • ¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óǰ µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì
      (´ÜÁö È®ÀÎÀ» À§ÇÑ Æ÷Àå ÈѼÕÀº Á¦¿Ü)
    • ¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óǰ µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
      ¿¹) È­Àåǰ, ½Äǰ, °¡ÀüÁ¦Ç°(¾Ç¼¼¼­¸® Æ÷ÇÔ) µî
    • º¹Á¦°¡ °¡´ÉÇÑ »óǰ µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì
      ¿¹) À½¹Ý/DVD/ºñµð¿À, ¼ÒÇÁÆ®¿þ¾î, ¸¸È­Ã¥, ÀâÁö, ¿µ»ó È­º¸Áý
    • ¼ÒºñÀÚÀÇ ¿äû¿¡ µû¶ó °³º°ÀûÀ¸·Î ÁÖ¹® Á¦À۵Ǵ »óǰÀÇ °æ¿ì ((1)ÇØ¿ÜÁÖ¹®µµ¼­)
    • µðÁöÅÐ ÄÁÅÙÃ÷ÀÎ eBook, ¿Àµð¿ÀºÏ µîÀ» 1ȸ ÀÌ»ó ´Ù¿î·Îµå¸¦ ¹Þ¾ÒÀ» °æ¿ì
    • ½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆÇ¸Å°¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
    • ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡
      ÇØ´çµÇ´Â °æ¿ì
    (1) ÇØ¿ÜÁÖ¹®µµ¼­ : ÀÌ¿ëÀÚÀÇ ¿äû¿¡ ÀÇÇÑ °³ÀÎÁÖ¹®»óǰÀ¸·Î ´Ü¼øº¯½É ¹× Âø¿À·Î ÀÎÇÑ Ãë¼Ò/±³È¯/¹Ýǰ ½Ã ¡®ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á¡¯ °í°´ ºÎ´ã (ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á : ¨ç¼­¾çµµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 12%, ¨èÀϺ»µµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 7%¸¦ Àû¿ë)
    »óǰ ǰÀý °ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ ǰÀý/Áö¿¬µÉ ¼ö ÀÖÀ¸¸ç, ǰÀý ½Ã °ü·Ã »çÇ׿¡ ´ëÇØ¼­´Â
    À̸ÞÀϰú ¹®ÀÚ·Î ¾È³»µå¸®°Ú½À´Ï´Ù.
    ¼ÒºñÀÚ ÇÇÇØº¸»ó
    ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó
    • »óǰÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, ǰÁúº¸Áõ ¹× ÇÇÇØº¸»ó µî¿¡ °üÇÑ »çÇ×Àº
      ¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øÈ¸ °í½Ã)¿¡ ÁØÇÏ¿© 󸮵Ê
    • ´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ
      ¼ÒºñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ

    ÀÌ Ã¥ÀÇ ±³º¸¹®°í º¸À¯µµ¼­°¡
    ÀÖ½À´Ï´Ù.

    ÀÌ ºÐ¾ßÀÇ º£½ºÆ®

    ´õº¸±â+

    ÀÌ ºÐ¾ßÀÇ ½Å°£

    ´õº¸±â+

    ¹Ù·Î°¡±â

    • ¿ìÃø È®ÀåÇü ¹è³Ê 2
    • ¿ìÃø È®ÀåÇü ¹è³Ê 2

    ÃÖ±Ù º» »óǰ