º»¹®³»¿ë ¹Ù·Î°¡±â
¹«·á¹è¼Û ¼Òµæ°øÁ¦ Á¤°¡Á¦free

ÇØ¿ÜÁÖ¹® [Book] Deep Learning with Python, Second Edition

Paperback
Francois Chollet ÁöÀ½ | Manning Publications | 2021³â 12¿ù 21ÀÏ
  • Á¤°¡ : 94,300¿ø
    ÆÇ¸Å°¡ : 82,040¿ø [13%¡é 12,260¿ø ÇÒÀÎ] ÇÒÀÎÄíÆù ¹Þ±â
  • ÇýÅÃ :
    [±âº»Àû¸³] 830¿ø Àû¸³ [1% Àû¸³] [Ãß°¡Àû¸³] 5¸¸¿ø ÀÌ»ó ±¸¸Å ½Ã 2,000¿ø Ãß°¡Àû¸³ ¾È³» [ȸ¿øÇýÅÃ] ȸ¿ø µî±Þ º°, 3¸¸¿ø ÀÌ»ó ±¸¸Å ½Ã 2~4% Ãß°¡Àû¸³ ¾È³»
  • Ãß°¡ÇýÅà : µµ¼­¼Òµæ°øÁ¦ ¾È³» Ãß°¡ÇýÅà ´õº¸±â
  • ¹è¼Ûºñ : ¹«·á ¹è¼Ûºñ ¾È³»
  • [¹è¼ÛÀÏÁ¤] ±Ù¹«ÀÏ ±âÁØ 7ÀÏ À̳» Ãâ°í ¿¹Á¤ ¹è¼ÛÀÏÁ¤ ¾È³»
    ÇØ¿ÜÁÖ¹®µµ¼­´Â ÇØ¿Ü °Å·¡Ã³ »çÁ¤¿¡ ÀÇÇØ ǰÀý/Áö¿¬µÉ¼ö ÀÖ½À´Ï´Ù.
    ½ºÆä¼È¿À´õ µµ¼­³ª Àϼ­ÇØ¿ÜÁÖ¹®µµ¼­¿Í ÇÔ²² ÁÖ¹®½Ã ¹è¼ÛÀÏÀÌ ÀÌ¿¡ ¸ÂÃß¾î Áö¿¬µÇ¿À´Ï, ÀÌÁ¡ À¯ÀÇÇØÁֽñ⠹ٶø´Ï´Ù.

¾Ë¸³´Ï´Ù.

  • ÇØ¿ÜÁÖ¹®µµ¼­´Â °í°´´ÔÀÇ ¿äû¿¡ ÀÇÇØ ÁÖ¹®ÇÏ´Â '°³ÀÎ ¿À´õ' »óǰÀ̱⠶§¹®¿¡, ´Ü¼øÇÑ °í°´º¯½É/Âø¿À·Î ÀÎÇÑ Ãë¼Ò,¹Ýǰ, ±³È¯ÀÇ °æ¿ì 'ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á'¸¦ ºÎ´ãÇÏ¼Å¾ß ÇÕ´Ï´Ù. ÀÌÁ¡ À¯ÀÇÇÏ¿© Áֽñ⠹ٶø´Ï´Ù. ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á : (1)¼­¾çµµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 12%, (2)ÀϺ»µµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 7% (¹Ýǰ/Ãë¼Ò ¼ö¼ö·á´Â, ¼öÀÔÁ¦¹Ýºñ¿ë(FedEx¼ö¼Ûºñ¿ë, °ü¼¼»çºñ, º¸¼¼Ã¢°í·á, ³»·ú ¿î¼Ûºñ, Åë°üºñ µî)°ú Àç°í¸®½ºÅ©(¹ÌÆÇ¸Å ¸®½ºÅ©, ȯÂ÷¼Õ)¿¡ µû¸¥ ºñ¿ëÀ» Æ÷ÇÔÇϸç, ¼­¾çµµ¼­´Â ÆÇ¸ÅÁ¤°¡ÀÇ 12%, ÀϺ»µµ¼­´Â ÆÇ¸ÅÁ¤°¡ÀÇ 7%°¡ Àû¿ëµË´Ï´Ù.)
  • ¿Ü±¹µµ¼­ÀÇ °æ¿ì ÇØ¿ÜÁ¦°øÁ¤º¸·Î¸¸ ¼­ºñ½ºµÇ¾î ¹ÌÇ¥±âµÈ Á¤º¸°¡ ÀÖÀ» ¼ö ÀÖ½À´Ï´Ù. ÇÊ¿äÇÑ Á¤º¸°¡ ÀÖÀ»°æ¿ì 1:1 ¹®ÀÇ°Ô½ÃÆÇ À» ÀÌ¿ëÇÏ¿© ÁֽʽÿÀ.
»óǰ»ó¼¼Á¤º¸
ISBN 9781617296864(1617296864)
Âʼö 504ÂÊ
¾ð¾î English
Å©±â 188 * 234 * 33 (mm)
Á¦º»ÇüÅ Paperback
»ðÈ­À¯¹« »ðÈ­ÀÖÀ½
ÃѱǼö 1±Ç

Ã¥¼Ò°³

ÀÌ Ã¥ÀÌ ¼ÓÇÑ ºÐ¾ß

Printed in full color! Unlock the groundbreaking advances of deep learning with this extensively revised new edition of the bestselling original. Learn directly from the creator of Keras and master practical Python deep learning techniques that are easy to apply in the real world.
In Deep Learning with Python, Second Edition you will learn:

Deep learning from first principles
Image classification and image segmentation
Timeseries forecasting
Text classification and machine translation
Text generation, neural style transfer, and image generation
Full color printing throughout

Deep Learning with Python has taught thousands of readers how to put the full capabilities of deep learning into action. This extensively revised full color second edition introduces deep learning using Python and Keras, and is loaded with insights for both novice and experienced ML practitioners. You¡¯ll learn practical techniques that are easy to apply in the real world, and important theory for perfecting neural networks.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Recent innovations in deep learning unlock exciting new software capabilities like automated language translation, image recognition, and more. Deep learning is quickly becoming essential knowledge for every software developer, and modern tools like Keras and TensorFlow put it within your reach?even if you have no background in mathematics or data science. This book shows you how to get started.

About the book
Deep Learning with Python, Second Edition introduces the field of deep learning using Python and the powerful Keras library. In this revised and expanded new edition, Keras creator Fran?ois Chollet offers insights for both novice and experienced machine learning practitioners. As you move through this book, you¡¯ll build your understanding through intuitive explanations, crisp color illustrations, and clear examples. You¡¯ll quickly pick up the skills you need to start developing deep-learning applications.

What's inside

Deep learning from first principles
Image classification and image segmentation
Time series forecasting
Text classification and machine translation
Text generation, neural style transfer, and image generation
Full color printing throughout

About the reader
For readers with intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required.
ÀÌ Ã¥ÀÇ »óǰ±¸¼º
* ÇØ´ç »óǰÀÇ »ó¼¼±¸¼ºÁ¤º¸¸¦ ÁغñÁßÀÔ´Ï´Ù.

¸ñÂ÷

1 What is deep learning?
2 The mathematical building blocks of neural networks
3 Introduction to Keras and TensorFlow
4 Getting started with neural networks: Classification and regression
5 Fundamentals of machine learning
6 The universal workflow of machine learning
7 Working with Keras: A deep dive
8 Introduction to deep learning for computer vision
9 Advanced deep learning for computer vision
10 Deep learning for timeseries
11 Deep learning for text
12 Generative deep learning
13 Best practices for the real world
14 Conclusions

°£´Ü¸®ºä (0)

0/1000ÀÚ
ÄÁÅÙÃ÷Æò°¡
5Á¡ ¸¸Á¡¿¡
0Á¡ 1Á¡ 2Á¡ 3Á¡ 4Á¡ 5Á¡
À̹ÌÁö÷ºÎ
(ÆÄÀϿ뷮Àº 1MB ÀÌÇÏÀ̸ç, ÆÄÀÏÇü½ÄÀº jpg, jpeg ÆÄÀϸ¸ ¾÷·Îµå °¡´ÉÇÕ´Ï´Ù.)

    ±³È¯/¹Ýǰ/ǰÀý¾È³»

    ¡Ø »óǰ ¼³¸í¿¡ ¹Ýǰ/±³È¯ °ü·ÃÇÑ ¾È³»°¡ ÀÖ´Â °æ¿ì ±× ³»¿ëÀ» ¿ì¼±À¸·Î ÇÕ´Ï´Ù. (¾÷ü »çÁ¤¿¡ µû¶ó ´Þ¶óÁú ¼ö ÀÖ½À´Ï´Ù.)

    ±³È¯/¹Ýǰ/ǰÀý¾È³»
    ¹Ýǰ/±³È¯¹æ¹ý ¸¶ÀÌ·ë > ÁÖ¹®°ü¸® > ÁÖ¹®/¹è¼Û³»¿ª > ÁÖ¹®Á¶È¸ > ¹Ýǰ/±³È¯½Åû ,
    [1:1»ó´ã>¹Ýǰ/±³È¯/ȯºÒ] ¶Ç´Â °í°´¼¾ÅÍ (1544-1900)

    ¡Ø ¿ÀǸ¶ÄÏ, ÇØ¿Ü¹è¼ÛÁÖ¹®, ±âÇÁÆ® ÁÖ¹®½Ã [1:1»ó´ã>¹Ýǰ/±³È¯/ȯºÒ]
        ¶Ç´Â °í°´¼¾ÅÍ (1544-1900)
    ¹Ýǰ/±³È¯°¡´É ±â°£ º¯½É¹ÝǰÀÇ °æ¿ì ¼ö·É ÈÄ 7ÀÏ À̳»,
    »óǰÀÇ °áÇÔ ¹× °è¾à³»¿ë°ú ´Ù¸¦ °æ¿ì ¹®Á¦Á¡ ¹ß°ß ÈÄ 30ÀÏ À̳»
    ¹Ýǰ/±³È¯ºñ¿ë º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹Ýǰ/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã
    ¹Ýǰ/±³È¯ ºÒ°¡ »çÀ¯
    • ¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óǰ µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì
      (´ÜÁö È®ÀÎÀ» À§ÇÑ Æ÷Àå ÈѼÕÀº Á¦¿Ü)
    • ¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óǰ µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
      ¿¹) È­Àåǰ, ½Äǰ, °¡ÀüÁ¦Ç°(¾Ç¼¼¼­¸® Æ÷ÇÔ) µî
    • º¹Á¦°¡ °¡´ÉÇÑ »óǰ µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì
      ¿¹) À½¹Ý/DVD/ºñµð¿À, ¼ÒÇÁÆ®¿þ¾î, ¸¸È­Ã¥, ÀâÁö, ¿µ»ó È­º¸Áý
    • ¼ÒºñÀÚÀÇ ¿äû¿¡ µû¶ó °³º°ÀûÀ¸·Î ÁÖ¹® Á¦À۵Ǵ »óǰÀÇ °æ¿ì ((1)ÇØ¿ÜÁÖ¹®µµ¼­)
    • µðÁöÅÐ ÄÁÅÙÃ÷ÀÎ eBook, ¿Àµð¿ÀºÏ µîÀ» 1ȸ ÀÌ»ó ´Ù¿î·Îµå¸¦ ¹Þ¾ÒÀ» °æ¿ì
    • ½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆÇ¸Å°¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
    • ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡
      ÇØ´çµÇ´Â °æ¿ì
    (1) ÇØ¿ÜÁÖ¹®µµ¼­ : ÀÌ¿ëÀÚÀÇ ¿äû¿¡ ÀÇÇÑ °³ÀÎÁÖ¹®»óǰÀ¸·Î ´Ü¼øº¯½É ¹× Âø¿À·Î ÀÎÇÑ Ãë¼Ò/±³È¯/¹Ýǰ ½Ã ¡®ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á¡¯ °í°´ ºÎ´ã (ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á : ¨ç¼­¾çµµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 12%, ¨èÀϺ»µµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 7%¸¦ Àû¿ë)
    »óǰ ǰÀý °ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ ǰÀý/Áö¿¬µÉ ¼ö ÀÖÀ¸¸ç, ǰÀý ½Ã °ü·Ã »çÇ׿¡ ´ëÇØ¼­´Â
    À̸ÞÀϰú ¹®ÀÚ·Î ¾È³»µå¸®°Ú½À´Ï´Ù.
    ¼ÒºñÀÚ ÇÇÇØº¸»ó
    ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó
    • »óǰÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, ǰÁúº¸Áõ ¹× ÇÇÇØº¸»ó µî¿¡ °üÇÑ »çÇ×Àº
      ¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øÈ¸ °í½Ã)¿¡ ÁØÇÏ¿© 󸮵Ê
    • ´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ
      ¼ÒºñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ

    ÀÌ Ã¥ÀÇ ±³º¸¹®°í º¸À¯µµ¼­°¡
    ÀÖ½À´Ï´Ù.

    ÀÌ ºÐ¾ßÀÇ º£½ºÆ®

    ´õº¸±â+
    ¹Ù·Î°¡±â
    • ¿ìÃø È®ÀåÇü ¹è³Ê 2
    • ¿ìÃø È®ÀåÇü ¹è³Ê 2
    ÃÖ±Ù º» »óǰ