º»¹®³»¿ë ¹Ù·Î°¡±â
¹«·á¹è¼Û ¼Òµæ°øÁ¦

Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More

Paperback
Bharath Ramsundar , Eastman, Peter ÁöÀ½ | O'Reilly Media | 2019³â 05¿ù 05ÀÏ
Deep Learning for the Life Sciences
  • Á¤°¡ : 88,360¿ø
    ÆÇ¸Å°¡ : 85,710¿ø [3%¡é 2,650¿ø ÇÒÀÎ] ÇÒÀÎÄíÆù ¹Þ±â
  • ÇýÅÃ :
    [±âº»Àû¸³] 2580¿ø Àû¸³ [3% Àû¸³] [Ãß°¡Àû¸³] 5¸¸¿ø ÀÌ»ó ±¸¸Å ½Ã 2,000¿ø Ãß°¡Àû¸³ ¾È³» [ȸ¿øÇýÅÃ] ȸ¿ø µî±Þ º°, 3¸¸¿ø ÀÌ»ó ±¸¸Å ½Ã 2~4% Ãß°¡Àû¸³ ¾È³» [¸®ºäÀû¸³] ¸®ºä ÀÛ¼º ½Ã e±³È¯±Ç ÃÖ´ë 300¿ø Ãß°¡Àû¸³ ¾È³»
  • Ãß°¡ÇýÅà : Æ÷ÀÎÆ® ¾È³» µµ¼­¼Òµæ°øÁ¦ ¾È³» Ãß°¡ÇýÅà ´õº¸±â
  • ¹è¼Ûºñ : ¹«·á ¹è¼Ûºñ ¾È³»
  • ¹è¼ÛÀÏÁ¤ : ¼­¿ïƯº°½Ã Á¾·Î±¸ ¼¼Á¾´ë·Î ±âÁØ Áö¿ªº¯°æ
    04¿ù 12ÀÏ Ãâ°í ¿¹Á¤ ¹è¼ÛÀÏÁ¤ ¾È³»
  • ¹Ù·Îµå¸² : ÀÎÅͳÝÀ¸·Î ÁÖ¹®ÇÏ°í ¸ÅÀå¿¡¼­ Á÷Á¢ ¼ö·É ¾È³» ¹Ù·Îµå¸² ÇýÅÃ
    ÈÞÀÏ¿¡´Â ¹Ù·Îµå¸² ÇȾ÷À¸·Î ´õ »¡¸® ¹Þ¾Æ º¸¼¼¿ä. ¹Ù·Îµå¸² ÇýÅùްí ÀÌ¿ëÇϱâ

¾Ë¸³´Ï´Ù.

  • ¿Ü±¹µµ¼­ÀÇ °æ¿ì ÇØ¿ÜÁ¦°øÁ¤º¸·Î¸¸ ¼­ºñ½ºµÇ¾î ¹ÌÇ¥±âµÈ Á¤º¸°¡ ÀÖÀ» ¼ö ÀÖ½À´Ï´Ù. ÇÊ¿äÇÑ Á¤º¸°¡ ÀÖÀ»°æ¿ì 1:1 ¹®ÀÇ°Ô½ÃÆÇ À» ÀÌ¿ëÇÏ¿© ÁֽʽÿÀ.
»óǰ»ó¼¼Á¤º¸
ISBN 9781492039839(1492039837)
Âʼö 238ÂÊ
¾ð¾î English
Å©±â 178(W) X 231(H) X 10(T) (mm)
Á¦º»ÇüÅ Paperback
ÃѱǼö 1±Ç
¸®µùÁö¼ö Level General Adult

Ã¥¼Ò°³

ÀÌ Ã¥ÀÌ ¼ÓÇÑ ºÐ¾ß

Deep learning has already achieved remarkable results in many fields. Now it's making waves throughout the sciences broadly and the life sciences in particular. This practical book teaches developers and scientists how to use deep learning for genomics, chemistry, biophysics, microscopy, medical analysis, and other fields.

Ideal for practicing developers and scientists ready to apply their skills to scientific applications such as biology, genetics, and drug discovery, this book introduces several deep network primitives. You'll follow a case study on the problem of designing new therapeutics that ties together physics, chemistry, biology, and medicine--an example that represents one of science's greatest challenges.

Learn the basics of performing machine learning on molecular data
Understand why deep learning is a powerful tool for genetics and genomics
Apply deep learning to understand biophysical systems
Get a brief introduction to machine learning with DeepChem
Use deep learning to analyze microscopic images
Analyze medical scans using deep learning techniques
Learn about variational autoencoders and generative adversarial networks
Interpret what your model is doing and how it's working

¿ø¼­¹ø¿ª¼­ ³»¿ë ¿³º¸±â

·Îº¿ °øÇÐÀÇ ¹ßÀüÀ¸·Î ¼ö¸¹Àº »ý¸í°úÇÐ ½ÇÇèµéÀº ÀÚµ¿È­µÅ ¾öû³­ ¾çÀÇ µ¥ÀÌÅ͸¦ ¸¸µé¾î ³½´Ù. Çö´ë »ý¸í °úÇÐÀÚµéÀº °Å´ëÇÑ µ¥ÀÌÅÍ ¼Ó¿¡¼­ ¼û°ÜÁø ÆÐÅÏÀ» ã°í Áö½ÄÀ» ¾ò¾î °úÇÐÀû °á·ÐÀ» µµÃâÇØ³»´Â ´É·ÂÀÌ ÇÊ¿äÇÏ´Ù.
ÀÌ Ã¥Àº µö·¯´×À» À¯ÀüüÇкÎÅÍ ½Å¾à °³¹ß,Áúº´ Áø´Ü±îÁö ´Ù¾çÇÑ »ý¸í°úÇÐ ¿µ¿ª¿¡¼­ »ç¿ëÇÏ´Â ¹æ¹ýÀ» ¼Ò°³ÇÑ´Ù. ¶ÇÇÑ ½ÇÁ¦·Î »ç¿ëÇÒ ¼ö ÀÖ´Â ¿¹Á¦ Äڵ带 Á¦°øÇØ µ¶ÀÚµéÀÇ ½Ã°£À» ¾Æ²¸ÁÙ °ÍÀÌ´Ù.

¡Ú ÀÌ Ã¥¿¡¼­ ´Ù·ç´Â ³»¿ë ¡Ú

¡á ºÐÀÚ µ¥ÀÌÅÍ¿¡ ¸Ó½Å·¯´×À» Àû¿ëÇÏ´Â ¹æ¹ý
¡á À¯ÀüÇÐ/À¯ÀüüÇÐÀ» À§ÇÑ °­·ÂÇÑ ºÐ¼® µµ±¸·Î¼­ÀÇ µö·¯´×
¡á µö·¯´×À¸·Î »ý¹°¹°¸®ÇÐ ½Ã½ºÅÛ ÀÌÇØ
¡á DeepChem ¶óÀ̺귯¸®¸¦ »ç¿ëÇÑ ¸Ó½Å·¯´× ¼Ò°³
¡á µö·¯´×À» »ç¿ëÇÑ Çö¹Ì°æ À̹ÌÁö ºÐ¼®
¡á µö·¯´×À» »ç¿ëÇÑ ÀÇ·á À̹ÌÁö ºÐ¼®
¡á VAE¿Í GAN ¸ðµ¨
¡á ¸Ó½Å·¯´× ¸ðµ¨ÀÇ ÀÛµ¿ ¿ø¸® ÇØ¼®

ÀÌ Ã¥ÀÇ ¿ø¼­¹ø¿ª¼­

Klover ¸®ºä (0)

ºÏ·Î±× ¸®ºä (0) ¾²·¯°¡±â

ºÏ·Î±× ¸®ºä´Â º»ÀÎ ÀÎÁõ ÈÄ ÀÛ¼º °¡´ÉÇÕ´Ï´Ù.
Ã¥À̳ª ŸÀο¡ ´ëÇØ ±Ù°Å ¾øÀÌ ºñ¹æÀ» Çϰųª ŸÀÎÀÇ ¸í¿¹¸¦ ÈѼÕÇÒ ¼ö ÀÖ´Â ³»¿ëÀº ºñ°ø°³ ó¸® µÉ ¼ö ÀÖ½À´Ï´Ù.
¡Ø ºÏ·Î±× ¸®ºä ¸®¿öµå Á¦°ø 2021. 4. 1 Á¾·á

¹®Àå¼öÁý (0) ¹®Àå¼öÁý ¾²±â ³ªÀÇ µ¶¼­±â·Ï º¸±â
※±¸¸Å ÈÄ ¹®Àå¼öÁý ÀÛ¼º ½Ã, ¸®¿öµå¸¦ Á¦°øÇÕ´Ï´Ù. ¾È³»

±³È¯/¹Ýǰ/ǰÀý¾È³»

¡Ø »óǰ ¼³¸í¿¡ ¹Ýǰ/±³È¯ °ü·ÃÇÑ ¾È³»°¡ ÀÖ´Â °æ¿ì ±× ³»¿ëÀ» ¿ì¼±À¸·Î ÇÕ´Ï´Ù. (¾÷ü »çÁ¤¿¡ µû¶ó ´Þ¶óÁú ¼ö ÀÖ½À´Ï´Ù.)

±³È¯/¹Ýǰ/ǰÀý¾È³»
¹Ýǰ/±³È¯¹æ¹ý ¸¶ÀÌ·ë > ÁÖ¹®°ü¸® > ÁÖ¹®/¹è¼Û³»¿ª > ÁÖ¹®Á¶È¸ > ¹Ýǰ/±³È¯½Åû ,
[1:1»ó´ã>¹Ýǰ/±³È¯/ȯºÒ] ¶Ç´Â °í°´¼¾ÅÍ (1544-1900)

¡Ø ¿ÀǸ¶ÄÏ, ÇØ¿Ü¹è¼ÛÁÖ¹®, ±âÇÁÆ® ÁÖ¹®½Ã [1:1»ó´ã>¹Ýǰ/±³È¯/ȯºÒ]
    ¶Ç´Â °í°´¼¾ÅÍ (1544-1900)
¹Ýǰ/±³È¯°¡´É ±â°£ º¯½É¹ÝǰÀÇ °æ¿ì ¼ö·É ÈÄ 7ÀÏ À̳»,
»óǰÀÇ °áÇÔ ¹× °è¾à³»¿ë°ú ´Ù¸¦ °æ¿ì ¹®Á¦Á¡ ¹ß°ß ÈÄ 30ÀÏ À̳»
¹Ýǰ/±³È¯ºñ¿ë º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹Ýǰ/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã
¹Ýǰ/±³È¯ ºÒ°¡ »çÀ¯
  • ¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óǰ µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì
    (´ÜÁö È®ÀÎÀ» À§ÇÑ Æ÷Àå ÈѼÕÀº Á¦¿Ü)
  • ¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óǰ µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
    ¿¹) È­Àåǰ, ½Äǰ, °¡ÀüÁ¦Ç°(¾Ç¼¼¼­¸® Æ÷ÇÔ) µî
  • º¹Á¦°¡ °¡´ÉÇÑ »óǰ µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì
    ¿¹) À½¹Ý/DVD/ºñµð¿À, ¼ÒÇÁÆ®¿þ¾î, ¸¸È­Ã¥, ÀâÁö, ¿µ»ó È­º¸Áý
  • ¼ÒºñÀÚÀÇ ¿äû¿¡ µû¶ó °³º°ÀûÀ¸·Î ÁÖ¹® Á¦À۵Ǵ »óǰÀÇ °æ¿ì ((1)ÇØ¿ÜÁÖ¹®µµ¼­)
  • µðÁöÅÐ ÄÁÅÙÃ÷ÀÎ eBook, ¿Àµð¿ÀºÏ µîÀ» 1ȸ ÀÌ»ó ´Ù¿î·Îµå¸¦ ¹Þ¾ÒÀ» °æ¿ì
  • ½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆÇ¸Å°¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
  • ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡
    ÇØ´çµÇ´Â °æ¿ì
(1) ÇØ¿ÜÁÖ¹®µµ¼­ : ÀÌ¿ëÀÚÀÇ ¿äû¿¡ ÀÇÇÑ °³ÀÎÁÖ¹®»óǰÀ¸·Î ´Ü¼øº¯½É ¹× Âø¿À·Î ÀÎÇÑ Ãë¼Ò/±³È¯/¹Ýǰ ½Ã ¡®ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á¡¯ °í°´ ºÎ´ã (ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á : ¨ç¼­¾çµµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 12%, ¨èÀϺ»µµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 7%¸¦ Àû¿ë)
»óǰ ǰÀý °ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ ǰÀý/Áö¿¬µÉ ¼ö ÀÖÀ¸¸ç, ǰÀý ½Ã °ü·Ã »çÇ׿¡ ´ëÇØ¼­´Â
À̸ÞÀϰú ¹®ÀÚ·Î ¾È³»µå¸®°Ú½À´Ï´Ù.
¼ÒºñÀÚ ÇÇÇØº¸»ó
ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó
  • »óǰÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, ǰÁúº¸Áõ ¹× ÇÇÇØº¸»ó µî¿¡ °üÇÑ »çÇ×Àº
    ¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øÈ¸ °í½Ã)¿¡ ÁØÇÏ¿© 󸮵Ê
  • ´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ
    ¼ÒºñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ

ÀÌ Ã¥ÀÇ ÇØ¿ÜÁÖ¹®°¡´Éµµ¼­°¡
ÀÖ½À´Ï´Ù.

ÀÌ Ã¥ÀÇ ¿ø¼­/¹ø¿ª¼­

¾È³»

ÀÌ ºÐ¾ßÀÇ º£½ºÆ®

´õº¸±â+

ÀÌ ºÐ¾ßÀÇ ½Å°£

´õº¸±â+

¹Ù·Î°¡±â

  • ¿ìÃø È®ÀåÇü ¹è³Ê 2
  • ¿ìÃø È®ÀåÇü ¹è³Ê 2

ÃÖ±Ù º» »óǰ