본문내용 바로가기
무료배송 소득공제

[Book] Industrial Applications of Batteries : From Cars to Aerospace And Energy Storage

Paperback
Broussely, M. (EDT)/ Pistoia, G. (EDT) 지음 | Elsevier | 2008년 02월 04일
  • 정가 : 458,680원
    판매가 : 366,940 [20%↓ 91,740원 할인] 할인쿠폰 받기
  • 혜택 :
    [기본적립] 11010원 적립 [3% 적립] [추가적립] 5만원 이상 구매 시 2,000원 추가적립 안내 [회원혜택] 회원 등급 별, 3만원 이상 구매 시 2~4% 추가적립 안내 [리뷰적립] 리뷰 작성 시 e교환권 최대 300원 추가적립 안내
  • 추가혜택 : 포인트 안내 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • 도서상태 : 현재는 도서주문이 불가합니다.

알립니다.

  • 외국도서의 경우 해외제공정보로만 서비스되어 미표기된 정보가 있을 수 있습니다. 필요한 정보가 있을경우 1:1 문의게시판 을 이용하여 주십시오.
상품상세정보
ISBN 9780444521606(0444521607)
쪽수 770쪽
언어 English
크기 163(W) X 243(H) X 55(T) (mm)
제본형태 Hardcover
총권수 1권
Textual Format Readings / Anthologies / Collected Works
리딩지수 Level Scholarly/Graduate

책소개

이 책이 속한 분야

Industrial Applications of Batteries looks at both the applications and the batteries and covers the relevant scientific and technological features. Presenting large batteries for stationary applications, e.g. energy storage, and also batteries for hybrid vehicles or different tools. The important aerospace field is covered both in connection with satellites and space missions. Examples of applications include, telecommunications, uninterruptible power supplies, systems for safety/alarms, car accessories, toll collection, asset tracking systems, medical equipment, and oil drilling. The first chapter on applications deals with electric and hybrid vehicles. Four chapters are devoted to stationary applications, i.e. energy storage (from the electric grid or solar/wind energy), load levelling, telecommunications, uninterruptible power supplies, back-up for safety/alarms. Battery management by intelligent systems and prediction of battery life are dealt with in a dedicated chapter. The topic of used battery collection and recycling, with the description of specific treatments for the different systems, is also extensively treated in view of its environmental relevance. Finally, the world market of these batteries is presented, with detailed figures for the various applications. * Updated and full overview of the power sources for industries * Written by leading scientists in their fields * Well balanced in terms of scientific and technical information

원서번역서 내용 엿보기

『배터리 응용』은 배터리에 대해 풍부한 경험을 가진 저자들이 지금까지 사용되고 있는 모든 산업용, 자동차용, 가정용, 우주용 및 기타 분야 배터리에 대해 기본원리를 설명하고, 기술적 발전 내용과 현장에서 실제로 나타날 수 있는 문제들을 망라하여 설명하고 있는 교과서라고 할 수 있다. 특히 산업계와 연구소 및 군수 분야의 현장에서 종사하는 사람들에게는 매우 실용적인 교과서가 될 수 있을 것으로 판단된다.

이 책의 원서번역서

목차


Chapter 1. Nonaqueous Batteries Used in Industrial Applications
G. Pistoia
1.1. Introduction 1
1.2. Primary Lithium Batteries 1
1.2.1. Lithium/Sulfur Dioxide Batteries 2
1.2.1.1. Cell Construction and Performance 3
1.2.2. Lithium/Thionyl Chloride Batteries 5
1.2.2.1. Cell Construction and Performance 6
1.2.3. Lithium/Manganese Dioxide Batteries 10
1.2.3.1. Cell Construction and Performance 11
1.2.4. Lithium/Carbon Monofluoride Batteries 14
1.2.4.1. Materials, Electrode Reactions, Cell Types and Performance 15
1.2.5. Basic Parameters of Primary Li Batteries 17
1.3. Rechargeable Batteries 17
1.3.1. Lithium-Ion Batteries 17
1.3.1.1. Carbons 18
1.3.1.2. Positive Electrodes 21
1.3.1.3. Liquid Electrolytes 22
1.3.1.4. Cell Construction and Performance (with Liquid Electrolytes) 23
1.3.1.5. Li-Ion Batteries with Polymeric Electrolytes 29
1.3.1.6. Examples of Applications 30
1.3.2. Batteries with a Lithium Electrode 32
1.3.2.1. Lithium/Sulfur Batteries 32
1.3.2.2. Li-Metal-Polymer Batteries 32
1.3.2.3. Li-Al/Iron Sulfide Batteries 38
1.3.3. Batteries with a Sodium Electrode 41
1.3.3.1. Sodium/Sulfur Batteries 42
1.3.3.2. Sodium/Nickel Chloride (Zebra) Batteries 46
1.3.4. Basic Parameters of Secondary Nonaqueous Batteries 49
Chapter 2. Aqueous Batteries Used in Industrial Applications
G. Pistoia
2.1. Introduction 53
2.2. Lead/Acid Batteries 53
2.2.1. Electrodes 53
2.2.2. Grids 55
2.2.3. Plate Designs 55
2.2.4. Electrolyte and Separators 57
2.2.5. Charge/Discharge Reactions 57
2.2.6. Design Features and Applications 59
2.2.7. Discharge Characteristics, Peukert Equation and Self-Discharge 63
2.2.8. Charging Methods 65
2.3. Nickel/Cadmium Batteries 66
2.3.1. Introduction 66
2.3.2. Types of Ni/Cd Batteries 66
2.3.3. Charge/Discharge Reactions 69
2.3.4. Discharge Characteristics, Memory Effect and Self-Discharge 71
2.3.5. Charging Techniques 73
2.3.6. Cycle Life 74
2.3.7. Applications 76
2.4. Nickel/Metal Hydride Batteries 77
2.4.1. Materials and Electrode Reactions 77
2.4.2. Cell Construction and Performance 80
2.4.3. Charging the Ni/MH Battery 83
2.4.4. Cycle and Battery Life 86
2.4.5. Applications 86
2.5. Nickel/Hydrogen Batteries 89
2.6. Nickel/Iron Batteries 91
2.7. NickellZinc Batteries 94
2.8. Zinc/Air Batteries 97
2.9. Silver/Zinc Batteries 101
2.10. Zinc/Bromine Batteries 103
2.11. Vanadium Redox-Flow Batteries 106
2.12. Alkaline Primary Batteries 108
2.12.1. Electrode Materials and Processes 109
2.12.2. Cell Construction 110
2.12.3. Cell Performance and Applications 111
2.13. Basic Parameters of Aqueous Secondary Batteries 114
Chapter 3. Characterization of Batteries by Electrochemical and Non-Electrochemical Techniques
D. Aurbach
3.1. Introduction 119
3.2. Categories of Battery Materials 120
3.2.1. Electrode Materials 120
3.2.1.1. General Features 120
3.2.1.2. Negative Electrodes 122
3.2.1.3. Positive Electrodes 124
3.2.2. Electrolyte Systems 126
3.2.2.1. Aqueous Solutions 126
3.2.2.2. Nonaqueous Solutions 126
3.2.2.3. Solid Electrolyte Systems 127
3.2.3. Supporting Elements 127
3.2.3.1. Current Collectors 127
3.2.3.2. Separators and Membranes 128
3.3. Stages and Levels in Battery Characterization 129
3.3.1. Introduction 129
3.3.2. Non-Destructive Studies of Full Cells 129
3.3.3. Post-Mortem Analysis of Full Cells 129
3.3.4. Half Cell Testing 130
3.3.5. Solution Studies 130
3.3.6. Electrode Studies ?Bulk 131
3.4. A Brief Summary of Available Techniques Related to the Characterization of Batteries 132
3.4.1. Glove Box Operations 132
3.4.2. Bulk Analytical Tools 133
3.4.2.1. Basics of Mass Spectrometry 133
3.4.2.2. M?sbauer Spectroscopy 134
3.4.2.3. Nuclear Magnetic Resonance 135
3.4.2.4. IR, UV-Vis, Raman 136
3.4.2.5. Inductively Coupled Plasma 139
3.4.2.6. Diffraction Techniques (X-Ray and Neutron Diffraction) 140
3.4.2.7. X-Ray Techniques: EXAFS and XANES 141
3.4.3. Microscopy 142
3.4.3.1. Electron Microscopy and Related Techniques 142
3.4.3.2. Atomic Force Microscopy 144
3.4.4. Analysis of Surface Area by Gas Adsorption Processes 146
3.4.5. Thermal Analysis 147
3.4.5.1. DTA, DSC and TGA 147
3.4.5.2. Accelerating Rate Calorimetry 148
3.4.6. Surface Analysis 149
3.4.6.1. General Remarks 149
3.4.6.2. FTIR and Raman Spectroscopies 149
3.4.6.3. XPS and AES 152
3.4.7. Electrochemical Techniques 155
3.4.7.1. Introduction 155
3.4.7.2. Fine Electroanalytical Techniques 155
3.4.8. Some Miscellaneous Techniques 160
3.4.9. In Situ Measurements 162
3.5. Typical Studies of Electrolyte Solutions and Solid Electrolytes 167
3.5.1. Evaluation of Solvents Parameters and Solutions Conductivity 167
3.5.2. Electrochemical Windows of Electrolyte Solutions 169
3.5.3. Thermal Studies 171
3.6. Typical Studies of Electrodes and Electrode Materials 173
3.6.1. The Scheme of Material Research 173
3.6.2. On the Electrochemical Characterization of Battery Electrodes 175
3.6.2.1. Metallic Electrodes 175
3.6.2.2. Electrodes for Flow Batteries (e.g. Air Batteries) and Batteries with Liquid Cathodes 176
3.6.2.3. Composite Electrodes 177
3.6.3. On the Surface Characterization of Battery Electrodes 184
3.7. Measurements of Complicated Batteries 186
3.7.1. Introduction ?General Aspects 186
3.7.2. Examples of Standard Electrochemical Performance Tests for Commercial and Prototype Batteries 187
3.7.3. Measurements of Prototype Batteries, Impedance Measurements and the Study of Failure Mechanisms 189
3.7.4. Safety Features and Safety Tests 192
3.8. Theoretical Aspects of Battery Characterization 192
3.9. Concluding Remarks 193
Chapter 4. Traction Batteries. EV and HEV
M. Broussely
4.1. Introduction 203
4.2. The Different Types of Electric Vehicles 204
4.2.1. Electric Vehicles (EV) 204
4.2.2. Hybrid Electric Vehicles (HEV) 208
4.2.2.1. Micro Hybrids "Stop and Start" 210
4.2.2.2. Soft Hybrids "Stop and Go" 211
4.2.2.3. Mild Hybrids 212
4.2.2.4. Full Hybrids or "Power Assist" 212
4.2.2.5. Plug-in Hybrids (PHEV) 213
4.2.2.6. Fuel Cell Hybrid EV 213
4.2.2.7. Large Hybrid Vehicles: Transit Buses, Light Trucks and Tramways 214
4.3. Battery Technology for Traction 214
4.3.1. Lead Acid 215
4.3.1.1. Lead Acid Batteries for Micro Hybrids 218
4.3.2. Nickel Cadmium 221
4.3.2.1. Nickel Cadmium for EVs 222
4.3.3. Nickel Metal Hydride 228
4.3.3.1. NiMH Batteries for EVs 229
4.3.3.2. NiMH Batteries for HEVs 231
4.3.4. Lithium Ion 242
4.3.4.1. Lithium Ion Technology 246
4.3.4.2. Lithium Ion Batteries for EVs 247
4.3.4.3. Lithium Ion Batteries for HEVs 256
4.3.5. Lithium Polymer Batteries 262
4.3.5.1. Battery Chemistry and Technology 263
4.3.5.2. Integration in Vehicle 263
4.3.6. Sodium Nickel Chloride Battery 265
4.3.6.1. Battery Chemistry and Technology 265
4.3.6.2. Bench Tests 267
4.3.6.3. On board Testing 268
4.4. Conclusion 268
Chapter 5. Aerospace Applications. I. Satellites, Launchers, Aircraft
Y. Borthomieu and N. Thomas
5.1. Introduction 273
5.2. Satellite Batteries 273
5.2.1. Satellite Requirements 274
5.2.1.1. GEO Satellites (Geostationary Earth Orbit) 274
5.2.1.2. LEO Satellites (Low Earth Orbit) 277
5.2.1.3. MEO and HEO Satellites (Medium Earth Orbit and High Earth Orbit) 279
5.2.2. Satellite Battery Technologies 280
5.2.2.1. NiCd Batteries 281
5.2.2.2. NiH2 Batteries 288
5.2.2.3. Li-Ion Batteries 297
5.3. Launcher Batteries 308
5.3.1. Rechargeable Batteries 309
5.3.2. Primary Batteries 311
5.3.2.1. Silver-Zinc Batteries 311
5.3.2.2. Lithium Batteries 312
5.3.3. Thermal Batteries 314
5.4. Aircraft Batteries 314
5.4.1. Batteries on Board Aircraft 314
5.4.2. Role of the Main Aircraft Battery 314
5.4.3. Defining the Aircraft Environment 315
5.4.4. Current Technology 317
5.4.5. Future Trends 323
Chapter 6. Aerospace Applications. II. Planetary Exploration Missions (Orbiters, Landers, Rovers and Probes)
B.V. Ratnakumar and M.C. Smart
6.1. Introduction 327
6.2. General Characteristics of Space Batteries 328
6.3. Planetary and Space Exploration Missions 329
6.3.1. Robotic Space Exploration 330
6.3.1.1. Orbiters 330
6.3.1.2. Fly-by and Sample-Return Missions 332
6.3.1.3. Landed Missions ?Lander 332
6.3.1.4. Landed Missions ?Rovers 333
6.3.1.5. Landed Missions ?Probes 334
6.3.1.6. Impactors and Penetrators 335
6.3.1.7. Miscellaneous Science Missions 336
6.3.2. Human Exploration Missions 336
6.3.2.1. Space Shuttle 336
6.3.2.2. Crew Exploration Vehicles 336
6.3.2.3. Planetary Ascent Stage and Descent Stage Modules 337
6.3.2.4. Extra-Vehicular Activities (EVA) 338
6.3.2.5. NASA's Future Surface Exploration Missions 338
6.4. Past and Current Planetary Missions 339
6.4.1. Lunar Missions (Apollo) 339
6.4.2. Missions to Mars and Other Planets 339
6.4.3. Other Missions 354
6.5. Future Mars Missions 356
6.6. Aerospace Battery Technologies 357
6.6.1. Primary Batteries 357
6.6.1.1. Silver-Zinc 357
6.6.1.2. Lithium-Sulfur Dioxide 359
6.6.1.3. Lithium-Thionyl Chloride 361
6.6.1.4. Lithium Carbon Monofluoride 361
6.6.1.5. Comparative Assessment of Primary Batteries 362
6.6.2. Thermal Batteries 363
6.6.3. Rechargeable Batteries 365
6.6.3.1. Silver-Zinc 365
6.6.3.2. Nickel-Cadmium 365
6.6.3.3. Nickel-Hydrogen 368
6.6.3.4. Nickel-Metal Hydride 373
6.6.3.5. Lithium-Ion 374
6.7. Unique Performance Attributes of Aerospace Li-Ion Batteries 380
6.7.1. Low Temperature Performance of Li-Ion Batteries 381
6.7.2. Radiation Tolerance 382
6.7.3. Calendar Life 384
6.8. Lithium Batteries ?Advanced Systems 384
6.9. Concluding Remarks on Rechargeable Batteries 387
Chapter 7. Stationary Applications. I. Lead-Acid Batteries for Telecommunications and UPS
R. Wagner
7.1. Introduction 395
7.2. The Lead-Acid Battery Technology 396
7.3. Large Batteries 402
7.4. Improvement of Power Performance 409
7.5. Features of VRLA Technology 417
7.6. Gel Batteries 430
7.7. AGM Batteries 435
7.8. Future Trends 442
7.9. Conclusions 451
Chapter 8. Stationary Applications. II. Load Levelling
J. Kondoh
8.1. Signification of Stationary Application 455
8.1.1. Electric Power Systems 455
8.1.2. Load Curves and Allocation for Power Plants 456
8.1.3. Load Levelling 457
8.1.4. Load Frequency Control 458
8.1.5. Other Applications 458
8.1.6. Present Conditions 458
8.1.7. Future Prospects 459
8.2. Sodium-Sulfur Battery Systems 460
8.2.1. Battery Chemistry and Components 460
8.2.2. Practical System 462
8.2.3. Capital Cost 468
8.3. Vanadium Redox Flow Battery Systems 468
8.3.1. Battery Chemistry and Components 468
8.3.2. Practical System 470
8.4. Other Secondary Battery Systems 475
8.4.1. Lead-Acid Battery Systems 475
8.4.2. Nickel-Metal Hydride Battery Systems 475
8.4.3. Lithium-Ion Battery Systems 477
8.5. Other Electric Energy Storage Systems 478
8.5.1. Pumped Hydroelectric Energy Storage Systems 479
8.5.2. Compressed Air Energy Storage Systems 479
8.5.3. Superconducting Magnetic Energy Storage Systems 482
8.5.4. Electric Double Layer Capacitors 484
8.5.5. Flywheel Energy Storage System 485
8.6. Comparison 486
8.6.1. Existing Systems 486
8.6.2. Lifetime and Capital Cost 486
8.6.3. Output Power and Stored Energy Densities 489
8.6.4. Cycle Efficiency 492
Chapter 9. Stationary Applications. III. Lead-Acid Batteries for Solar and Wind Energy Storage
R. Wagner
9.1. Introduction 497
9.2. Energy Storage for Solar and Wind Systems 498
9.3. Flooded Batteries 502
9.4. Large Batteries 505
9.5. Small Systems with VRLA Batteries 512
9.6. Large Systems with Gel Batteries 524
9.7. Further Developments 537
9.8. Conclusions 543
Chapter 10. Stationary Applications. IV. The Role of Nickel-Cadmium Batteries.
A. Green
10.1. Introduction 547
10.2. History 547
10.3. Chemistry 548
10.3.1. Memory Effect 549
10.4. Construction Features of Nickel-Cadmium Cells 550
10.4.1. Plate Technology 550
10.4.2. Active Materials 551
10.4.3. Separators 552
10.4.4. Electrolyte 552
10.4.5. Range of Products Available 552
10.5. Electrical and Mechanical Characteristics 552
10.5.1. Performance at High and Low Temperatures 553
10.5.2. Lifetime at High Temperatures 554
10.5.3. Cycling Behaviour 554
10.5.4. Charge Characteristics 555
10.6. Cost and Reliability Considerations 556
10.7. A Large Battery in an Energy Storage Application 558
10.7.1. Introduction 558
10.7.2. Defining the BESS 558
10.7.3. The BESS Design 559
10.7.3.1. The Battery 559
10.7.3.2. The Electrical System 560
10.7.4. Operating Results 561
10.7.5. Awards 561
10.7.6. Final Considerations 562
10.8. Small Batteries in Telecommunication Applications 562
10.9. Lifetime and Reliability: The Case of an Old Battery 564
10.10. Nickel-Cadmium Applications Summary 566
Chapter 11. Miscellaneous Applications. I. Metering, Power Tools, Alarm/Security, Medical Equipments, etc.
M. Grimm
11.1. The Power Sources 573
11.1.1. The Different Electrochemical Systems 573
11.1.2. How to Select the Right Power Source? 577
11.2. Metering Systems 578
11.2.1. Heat Meters and HCA (Heat Cost Allocators) 580
11.2.2. Power (Electricity) Meters 581
11.2.3. Gas Meters 582
11.2.4. Water Meters 583
11.2.5. Data Loggers with RF Transmission 583
11.2.6. Data Loggers with GSM or GPRS Transmission 584
11.2.7. AMR (Automatic Meter Readers) 585
11.2.8. Others 586
11.3. Remote Mobile Monitoring 587
11.3.1. ID Tags 587
11.3.2. Bar Code Portable Readers 589
11.3.3. GPS (Global Positioning Systems) 590
11.3.4. GSM (Global System for Mobile Phones) Modules 591
11.4. Automatic Assistance Systems 592
11.4.1. SARSAT/COSPAS Beacons 592
11.4.2. Safety Lights 594
11.5. Alarm and Security Systems 594
11.5.1. Emergency Light Units (ELUs) 595
11.5.2. Wireless Alarm Sensors 596
11.5.3. Wireless Alarm Central Units 597
11.5.4. Alarm Sirens 597
11.5.5. ZigBee 598
11.5.6. Access Control Systems 599
11.5.7. Remote Level Control Systems 600
11.5.8. Telematics Systems 601
11.5.9. Power Line Surveillance 601
11.5.10. PIGs 601
11.6. Memory Back Up (MBU) ?Real Time Clocks (RTC) 602
11.7. Professional Cordless Tools 603
11.7.1. Drills 604
11.7.2. Drills and Screw Drivers-Wrenches 605
11.7.3. Screw Drivers 605
11.7.4. Grinders and Sanders 605
11.7.5. Planers 606
11.7.6. Saws (Circular, Jig, Sabre, Diamond, etc.) 606
11.7.7. Mini Tools 606
11.7.8. Irrigation Systems 607
11.7.9. Hedge Trimmers, Chain Saws, Pruning Shears 607
11.8. Professional Appliances 608
11.8.1. Handheld Terminals 608
11.8.2. Professional AN (Audio/Video) Equipments 609
11.9. Ambulatory Medical Equipments 610
11.9.1. Portable Defibrillator Systems 610
11.9.2. Inter-Cardial Pump Systems 611
11.9.3. Ventricular Assist Pump Systems 612
11.9.4. Emergency Portable Medical Fluid Warmers 612
11.9.5. Powered Respirators 613
11.9.6. Special Medical Tools 614
11.10. Conclusion 614
Chapter 12. Miscellaneous Applications. II. Tracking Systems, Toll Collection, Oil Drilling, Car Accessories, Oceanography
H. Yamin, M. Shlepakov and C. Menachem
12.1. Introduction 617
12.2. Tyre Pressure Monitoring System (TPMS) 617
12.2.1. Direct, Indirect and Battery-Less TPMS 618
12.2.2. Power Consumption 619
12.2.3. Power Sources for TPMS 619
12.3. Electronic Toll Collection 620
12.3.1. Toll Collection Systems 621
12.3.2. Power Sources 621
12.4. Automatic Crash Notification (ACN) 622
12.4.1. Electrical Requirements and Power Sources 623
12.5. Tracking 624
12.5.1. Tracking Methods 624
12.5.1.1. RFID (Radio Frequency Identification) 624
12.5.1.2. GPS (Global Positioning System) 625
12.5.2. GPS Transmitters 626
12.5.3. Power Sources 628
12.5.4. Advantages and Disadvantages of Available Batteries 631
12.6. Oil Drilling 632
12.6.1. Applications 633
12.6.2. Power Requirements 634
12.6.3. Criteria of Battery Choice 636
12.6.4. Battery Chemistry 638
12.6.5. Future Developments 640
12.7. Oceanography 641
12.7.1. Applications 642
12.7.2. Power Requirements 642
12.7.3. Criteria of Battery Choice 643
Chapter 13. Battery Management and Life Prediction
B.Y. Liaw and D.D. Friel
13.1. Definitions 649
13.1.1. Battery Management 649
13.1.2. Battery Life Prediction 650
13.2. Monitoring & Measuring 652
13.2.1. Cell Monitoring 652
13.2.2. Cell Measurement 655
13.2.3. Battery Monitoring 656
13.2.4. Battery Measurement 657
13.3. Battery Management Functions 657
13.3.1. Charge Management 658
13.3.1.1. Charge Management with Temperature 659
13.3.1.2. Charge Management with Voltage 660
13.3.1.3. Charge Management with Other Means 661
13.3.2. Discharge Management 663
13.3.2.1.Discharge Management with Voltage 664
13.3.2.2. Discharge Management with Temperature and Current 666
13.3.2.3. Discharge Management with State-of-Charge 668
13.3.3. Safety Management 670
13.3.4. "Smart Battery System" ?A Specific Battery Management Example 671
13.4. Life Prediction 673
13.4.1. Performance Prediction: Stage One Developments 675
13.4.2. Life Prediction with Laboratory Evaluations: Stage Two Development 679
13.4.3. Life Prediction in Practical Use: Stage Three Developments 683
13.4.4. Future Directions 686
Chapter 14. Battery Collection and Recycling
D. Cheret
14.1. Introduction 691
14.2. Eco-efficiency Study on Recycling Techniques 692
14.3. Trans-Boundary Movement of Batteries within the OECD Member States 696
14.4. Battery Collection Schemes 699
14.4.1. The Particular European Situation 699
14.4.2. Financing the Schemes 700
14.4.3. A Closed Loop Concept to Reduce the Exposure to Metal Price Fluctuation 703
14.5. The Particular Example of a Battery Producer: SAFT 704
14.6. Recycling Rate: What Does It Mean? 705
14.7. Battery Recycling: The Existing Technologies 707
14.7.1. The Recycling of Mixed Batteries 709
14.7.2. The Recycling of Batteries Containing Mercury 711
14.7.3. The Recycling of Zinc-Carbon and Alkaline-Manganese Primary Batteries 714
14.7.4. The Recycling of Lithium Primary Batteries 718
14.7.5. The Recycling of Lead-Acid Batteries 719
14.7.6. The Recycling of NiCd Batteries 722
14.7.7. The Recycling of NiMH Batteries 727
14.7.8. The Recycling of Li-ion and Li-Polymer Batteries 730
14.8. Conclusion 736
Chapter 15. World Market for Industrial Batteries
D. Saxman
15.1. Scope & Analysis Assumption 737
15.1.1. Definition of Industrial Battery 737
15.1.2. Definitions of Industrial Battery Market Sectors 738
15.1.3. Other Analysis Assumptions 740
15.2. Driving Forces Used to Predict World Market Value 740
15.3. Industrial Energy Storage Systems 742
15.3.1. Battery Characteristics by Type 743
15.3.2. Competing Fuel Cell Systems 746
15.3.3. Competing Exotic Energy Storage Systems 748
15.4. Industrial Battery Configurations 748
15.4.1. Lifecycle Configurations 749
15.4.2. Technical Configurations 749
15.5. Driving Forces by Market Sector 750
15.5.1. Computing Batteries 750
15.5.2. Communications Batteries 751
15.5.3. Portable Tools Batteries 753
15.5.4. Other Portable Product Batteries 754
15.5.5. Medical Batteries 755
15.5.6. Computer Memory Batteries 756
15.5.7. UPS/Stationary Batteries 756
15.5.8. Military/Aerospace Batteries 757
15.5.9. Industrial EV Batteries 759
15.5.10. HEV/EV Batteries 760
15.5.11. Auto SLI Batteries 761
15.6. Historic and Predicted World Market Summary for Industrial Batteries 762
Subject Index 767

Klover 리뷰 (0)

북로그 리뷰 (0) 쓰러가기

북로그 리뷰는 본인 인증 후 작성 가능합니다.
책이나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 내용은 비공개 처리 될 수 있습니다.
※ 북로그 리뷰 리워드 제공 2021. 4. 1 종료

문장수집 (0) 문장수집 쓰기 나의 독서기록 보기
※구매 후 문장수집 작성 시, 리워드를 제공합니다. 안내

교환/반품/품절안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품/품절안내
반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
[1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
    또는 고객센터 (1544-1900)
반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유
  • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)
  • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등
  • 복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
  • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
  • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
    해당되는 경우
(1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①서양도서-판매정가의 12%, ②일본도서-판매정가의 7%를 적용)
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
이메일과 문자로 안내드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
  • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
    소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
  • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
    소비자 보호에 관한 법률에 따라 처리함

이 책의 해외주문가능도서
있습니다.

이 책의 원서/번역서

안내

이 분야의 신간

더보기+

바로가기

  • 우측 확장형 배너 2
  • 우측 확장형 배너 2

최근 본 상품