본문내용 바로가기
무료배송 소득공제

해외주문 Machine Learning in the Aws Cloud Add Intelligence to Applications with Amazon Sagemaker and Amazon Rekognition

PAPERBACK/PSC | Paperback
Abhishek Mishra 지음 | Sybex | 2019년 09월 11일
Machine Learning in the Aws Cloud

이 책의 다른 상품 정보

  • 정가 : 66,600원
    판매가 : 52,610 [21%↓ 13,990원 할인] 할인쿠폰 받기
  • 통합포인트 :
    [기본적립] 530원 적립 [1% 적립] [추가적립] 5만원 이상 구매 시 2천원 추가적립 안내 [회원혜택] 실버등급 이상, 3만원 이상 구매 시 2~4% 추가적립 안내
  • 추가혜택 : 도서소득공제 안내 추가혜택 더보기
  • 배송비 : 무료 배송비 안내
  • [배송일정] 근무일 기준 14일 이내 출고 예정 배송일정 안내
    해외주문도서는 해외 거래처 사정에 의해 품절/지연될수 있습니다.
    스페셜오더 도서나 일서해외주문도서와 함께 주문시 배송일이 이에 맞추어 지연되오니, 이점 유의해주시기 바랍니다.

알립니다.

  • 해외주문도서는 고객님의 요청에 의해 주문하는 '개인 오더' 상품이기 때문에, 단순한 고객변심/착오로 인한 취소,반품, 교환의 경우 '해외주문 반품/취소 수수료'를 부담하셔야 합니다. 이점 유의하여 주시기 바랍니다. 반품/취소 수수료 : (1)서양도서-판매정가의 12%, (2)일본도서-판매정가의 7% (반품/취소 수수료는, 수입제반비용(FedEx수송비용, 관세사비, 보세창고료, 내륙 운송비, 통관비 등)과 재고리스크(미판매 리스크, 환차손)에 따른 비용을 포함하며, 서양도서는 판매정가의 12%, 일본도서는 판매정가의 7%가 적용됩니다.)
  • 외국도서의 경우 해외제공정보로만 서비스되어 미표기된 정보가 있을 수 있습니다. 필요한 정보가 있을경우 1:1 문의게시판 을 이용하여 주십시오.

이 책의 연관상품

상품상세정보
ISBN 9781119556718(1119556716)
쪽수 528쪽
언어 English
크기 185 * 234 * 30 (mm)
PAPERBACK/PSC
제본형태 Paperback
삽화유무 삽화있음
총권수 1권
리딩지수 Level General Adult

책소개

이 책이 속한 분야

Harness the power of AWS Cloud machine learning services

Recent advances in storage, CPU, and GPU technology, coupled with the ease with which you can create virtual computing resources in the cloud, and the availability of Python libraries such as Pandas, Matplotlib, TensorFlow, and Scikit-learn, have made it possible to build and deploy machine learning (ML) systems at scale and get results in real-time. Machine Learning in the AWS Cloud offers an introduction to the machine learning capabilities of the Amazon Web Services ecosystem. The book is filled with illustrative examples that are designed to help with solutions to real-world regression and classification challenges. While prior experience with ML is not a requirement, some knowledge of Python and a basic knowledge of Amazon Web Services is a plus.

The author--a noted expert on the topic--includes a review of fundamental machine learning concepts and explores the various types of ML systems. He explains how they are used, and the challenges you may face when grappling with ML solutions. The book highlights the machine learning services provided by Amazon Web Services as well as providing an overview of the basics of cloud computing and AWS offerings in the cloud-based machine learning space. The author walks you through the step-by-step process for using Amazon's machine learning services to implement image recognition, build chatbots, and train and deploy custom machine learning models to the AWS cloud.

Improve your knowledge of the basics of machine learning and learn to use NumPy, Pandas, and Scikit-learn(R)
Learn to visualize data with Matplotlib
Learn to train and deploy machine learning models with Amazon SageMaker
Learn to use Amazon Machine Learning
Learn to use Amazon Lex(R), Amazon Comprehend, and Amazon Rekognition
Learn about the basics of AWS infrastructure and commonly used services such as Amazon S3, Amazon DynamoDB, Amazon Cognito, and AWS Lambda
ABOUT AMAZON WEB SERVICES

Amazon Web Services (AWS) is a secure cloud services platform that offers a broad set of global compute, storage, database, analytics, application, and deployment services to help businesses scale and grow. AWS Cloud products and solutions aid business organizations in building sophisticated applications with increased flexibility, scalability, and reliability.
이 책의 상품구성
* 해당 상품의 상세구성정보를 준비중입니다.

원서번역서 내용 엿보기

한 권의 책으로 머신러닝 기초 개념부터 AWS의 머신러닝 서비스를 한번에 훑어볼 수 있으며, 크게 두 부분으로 나눠 설명한다. 1장부터 8장까지 전반부에서는 머신러닝의 기본 개념부터 데이터 수집, 전처리와 시각화, Scikit-learn을 통한 머신러닝 모델 생성과 모델 평가 방법을 다루며, 9장부터 17장까지는 Amazon S3를 시작으로 Comprehend, Lex, Rekognition 등 AWS의 주요 머신러닝 서비스를 간단한 실습과 함께 소개하고 AWS의 머신러닝 서비스 중 가장 핵심이 되는 SageMaker를 두 개의 장에 걸쳐 설명한다.

이 책의 원서번역서

목차

Introduction xxiii

Part 1 Fundamentals of Machine Learning 1

Chapter 1 Introduction to Machine Learning 3

What is Machine Learning? 4

Tools Commonly Used by Data Scientists 4

Common Terminology 5

Real-World Applications of Machine Learning 7

Types of Machine Learning Systems 8

Supervised Learning 8

Unsupervised Learning 9

Semi-Supervised Learning 10

Reinforcement Learning 11

Batch Learning 11

Incremental Learning 12

Instance-based Learning 12

Model-based Learning 12

The Traditional Versus the Machine Learning Approach 13

A Rule-based Decision System 14

A Machine Learning-based System 17

Summary 25

Chapter 2 Data Collection and Preprocessing 27

Machine Learning Datasets 27

Scikit-learn Datasets 27

AWS Public Datasets 30

Kaggle.com Datasets 30

UCI Machine Learning Repository 30

Data Preprocessing Techniques 31

Obtaining an Overview of the Data 31

Handling Missing Values 42

Creating New Features 44

Transforming Numeric Features 46

One-Hot Encoding Categorical Features 47

Summary 50

Chapter 3 Data Visualization with Python 51

Introducing Matplotlib 51

Components of a Plot 54

Figure 55

Axes55

Axis 56

Axis Labels 56

Grids 57

Title 57

Common Plots 58

Histograms 58

Bar Chart 62

Grouped Bar Chart 63

Stacked Bar Chart 65

Stacked Percentage Bar Chart 67

Pie Charts 69

Box Plot 71

Scatter Plots 73

Summary 78

Chapter 4 Creating Machine Learning Models with Scikit-learn 79

Introducing Scikit-learn 79

Creating a Training and Test Dataset 80

K-Fold Cross Validation 84

Creating Machine Learning Models 86

Linear Regression 86

Support Vector Machines 92

Logistic Regression 101

Decision Trees 109

Summary 114

Chapter 5 Evaluating Machine Learning Models 115

Evaluating Regression Models 115

RMSE Metric 117

R2 Metric 119

Evaluating Classification Models 119

Binary Classification Models 119

Multi-Class Classification Models 126

Choosing Hyperparameter Values 131

Summary 132

Part 2 Machine Learning with Amazon Web Services 133

Chapter 6 Introduction to Amazon Web Services 135

What is Cloud Computing? 135

Cloud Service Models 136

Cloud Deployment Models 138

The AWS Ecosystem 139

Machine Learning Application Services 140

Machine Learning Platform Services 141

Support Services 142

Sign Up for an AWS Free-Tier Account 142

Step 1: Contact Information 143

Step 2: Payment Information 145

Step 3: Identity Verification 145

Step 4: Support Plan Selection 147

Step 5: Confirmation 148

Summary 148

Chapter 7 AWS Global Infrastructure 151

Regions and Availability Zones 151

Edge Locations 153

Accessing AWS 154

The AWS Management Console 156

Summary 160

Chapter 8 Identity and Access Management 161

Key Concepts 161

Root Account 161

User 162

Identity Federation 162

Group 163

Policy164

Role 164

Common Tasks 165

Creating a User 167

Modifying Permissions Associated with an Existing Group 172

Creating a Role 173

Securing the Root Account with MFA 176

Setting Up an IAM Password Rotation Policy 179

Summary 180

Chapter 9 Amazon S3 181

Key Concepts 181

Bucket 181

Object Key 182

Object Value 182

Version ID 182

Storage Class 182

Costs 183

Subresources 183

Object Metadata 184

Common Tasks 185

Creating a Bucket 185

Uploading an Object 189

Accessing an Object 191

Changing the Storage Class of an Object 195

Deleting an Object 196

Amazon S3 Bucket Versioning 197

Accessing Amazon S3 Using the AWS CLI 199

Summary 200

Chapter 10 Amazon Cognito 201

Key Concepts 201

Authentication 201

Authorization 201

Identity Provider 202

Client 202

OAuth 2.0 202

OpenID Connect 202

Amazon Cognito User Pool 202

Identity Pool 203

Amazon Cognito Federated Identities 203

Common Tasks 204

Creating a User Pool 204

Retrieving the App Client Secret 213

Creating an Identity Pool 214

User Pools or Identity Pools: Which One Should You Use? 218

Summary 219

Chapter 11 Amazon DynamoDB 221

Key Concepts 221

Tables 222

Global Tables 222

Items 222

Attributes 222

Primary Keys 222

Secondary Indexes 223

Queries 223

Scans 223

Read Consistency 224

Read/Write Capacity Modes 224

Common Tasks 225

Creating a Table 225

Adding Items to a Table 228

Creating an Index 231

Performing a Scan 233

Performing a Query 235

Summary 236

Chapter 12 AWS Lambda 237

Common Use Cases for Lambda 237

Key Concepts 238

Supported Languages 238

Lambda Functions 238

Programming Model 239

Execution Environment 243

Service Limitations 244

Pricing and Availability 244

Common Tasks 244

Creating a Simple Python Lambda Function Using the AWS Management Console 244

Testing a Lambda Function Using the AWS Management Console 250

Deleting an AWS Lambda Function Using the AWS Management Console 253

Summary 255

Chapter 13 Amazon Comprehend 257

Key Concepts 257

Natural Language Processing 257

Topic Modeling 259

Language Support 259

Pricing and Availability 259

Text Analysis Using the Amazon Comprehend Management Console 260

Interactive Text Analysis with the AWS CLI 262

Entity Detection with the AWS CLI 263

Key Phrase Detection with the AWS CLI 264

Sentiment Analysis with the AWS CLI 265

Using Amazon Comprehend with AWS Lambda 266

Summary 274

Chapter 14 Amazon Lex 275

Key Concepts 275

Bot 275

Client Application 276

Intent 276

Slot 276

Utterance 277

Programming Model 277

Pricing and Availability 278

Creating an Amazon Lex Bot 278

Creating Amazon DynamoDB Tables 278

Creating AWS Lambda Functions 285

Creating the Chatbot 304

Customizing the AccountOverview Intent 308

Customizing the ViewTransactionList Intent 312

Testing the Chatbot 314

Summary 315

Chapter 15 Amazon Machine Learning 317

Key Concepts 317

Datasources 318

ML Model 318

Regularization 319

Training Parameters 319

Descriptive Statistics 320

Pricing and Availability 321

Creating Datasources 321

Creating the Training Datasource 324

Creating the Test Datasource 330

Viewing Data Insights 332

Creating an ML Model 337

Making Batch Predictions 341

Creating a Real-Time Prediction Endpoint for Your Machine Learning Model 346

Making Predictions Using the AWS CLI 347

Using Real-Time Prediction Endpoints with Your Applications 349

Summary 350

Chapter 16 Amazon SageMaker 353

Key Concepts 353

Programming Model 354

Amazon SageMaker Notebook Instances 354

Training Jobs 354

Prediction Instances 355

Prediction Endpoint and Endpoint Configuration 355

Amazon SageMaker Batch Transform 355

Data Channels 355

Data Sources and Formats 356

Built-in Algorithms 356

Pricing and Availability 357

Creating an Amazon SageMaker Notebook Instance 357

Preparing Test and Training Data 362

Training a Scikit-learn Model on an Amazon SageMaker Notebook Instance 364

Training a Scikit-learn Model on a Dedicated Training Instance 368

Training a Model Using a Built-in Algorithm on a Dedicated Training Instance 379

Summary 384

Chapter 17 Using Google TensorFlow with Amazon SageMaker 387

Introduction to Google TensorFlow 387

Creating a Linear Regression Model with Google TensorFlow 390

Training and Deploying a DNN Classifier Using the TensorFlow Estimators API and Amazon SageMaker 408

Summary 419

Chapter 18 Amazon Rekognition 421

Key Concepts 421

Object Detection 421

Object Location 422

Scene Detection 422

Activity Detection 422

Facial Recognition 422

Face Collection 422

API Sets 422

Non-Storage and Storage-Based Operations 423

Model Versioning 423

Pricing and Availability 423

Analyzing Images Using the Amazon Rekognition Management Console 423

Interactive Image Analysis with the AWS CLI 428

Using Amazon Rekognition with AWS Lambda 433

Creating the Amazon DynamoDB Table 433

Creating the AWS Lambda Function 435

Summary 444

Appendix A Anaconda and Jupyter Notebook Setup 445

Installing the Anaconda Distribution 445

Creating a Conda Python Environment 447

Installing Python Packages 449

Installing Jupyter Notebook 451

Summary 454

Appendix B AWS Resources Needed to Use This Book 455

Creating an IAM User for Development 455

Creating S3 Buckets 458

Appendix C Installing and Configuring the AWS CLI 461

Mac OS Users 461

Installing the AWS CLI 461

Configuring the AWS CLI 462

Windows Users 464

Installing the AWS CLI4 64

Configuring the AWS CLI 465

Appendix D Introduction to NumPy and Pandas 467

NumPy 467

Creating NumPy Arrays 467

Modifying Arrays 471

Indexing and Slicing 474

Pandas 475

Creating Series and Dataframes 476

Getting Dataframe Information 478

Selecting Data 481

Index 485

간단리뷰 (0)

도서 구매 후 리뷰를 작성하시면 통합포인트를 드립니다.
결제 90일 이내 작성 시 50원 / 발송 후 5일 이내 작성 시 100원
(포인트는 작성 후 다음 날 적립되며, 도서 발송 전 작성 시에는 발송 후 익일에 적립됩니다.
외서/eBook/음반/DVD/GIFT 및 잡지 상품 제외) 안내
0/1000자
컨텐츠평가
5점 만점에
0점 1점 2점 3점 4점 5점
이미지첨부
(파일용량은 1MB 이하이며, 파일형식은 jpg, jpeg 파일만 업로드 가능합니다.)

    교환/반품/품절안내

    ※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

    교환/반품/품절안내
    반품/교환방법 마이룸 > 주문관리 > 주문/배송내역 > 주문조회 > 반품/교환신청 ,
    [1:1상담>반품/교환/환불] 또는 고객센터 (1544-1900)

    ※ 오픈마켓, 해외배송주문, 기프트 주문시 [1:1상담>반품/교환/환불]
        또는 고객센터 (1544-1900)
    반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내,
    상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
    반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    반품/교환 불가 사유
    • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
      (단지 확인을 위한 포장 훼손은 제외)
    • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
      예) 화장품, 식품, 가전제품(악세서리 포함) 등
    • 복제가 가능한 상품 등의 포장을 훼손한 경우
      예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
    • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)
    • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
    • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
    • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에
      해당되는 경우
    (1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품으로 단순변심 및 착오로 인한 취소/교환/반품 시 ‘해외주문 반품/취소 수수료’ 고객 부담 (해외주문 반품/취소 수수료 : ①서양도서-판매정가의 12%, ②일본도서-판매정가의 7%를 적용)
    상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는
    이메일과 문자로 안내드리겠습니다.
    소비자 피해보상
    환불지연에 따른 배상
    • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은
      소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨
    • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의
      소비자 보호에 관한 법률에 따라 처리함

    이 책의 원서/번역서

    안내

    이 분야의 베스트

    더보기+

    바로가기

    • 우측 확장형 배너 2
    • 우측 확장형 배너 2

    최근 본 상품