º»¹®³»¿ë ¹Ù·Î°¡±â
¹«·á¹è¼Û ¼Òµæ°øÁ¦ Á¤°¡Á¦free

ÇØ¿ÜÁÖ¹® [Book] Information Theoretic Approach to Econometrics

Hardcover
Judge, George G. , Mittelhammer, Ron C. ÁöÀ½ | Cambridge University Press | 2011³â 12¿ù 12ÀÏ
  • Á¤°¡ : 196,480¿ø
    ÆÇ¸Å°¡ : 174,870¿ø [11%¡é 21,610¿ø ÇÒÀÎ] ÇÒÀÎÄíÆù ¹Þ±â
  • ÇýÅÃ :
    [±âº»Àû¸³] 1750¿ø Àû¸³ [1% Àû¸³] [Ãß°¡Àû¸³] 5¸¸¿ø ÀÌ»ó ±¸¸Å ½Ã 2,000¿ø Ãß°¡Àû¸³ ¾È³» [ȸ¿øÇýÅÃ] ȸ¿ø µî±Þ º°, 3¸¸¿ø ÀÌ»ó ±¸¸Å ½Ã 2~4% Ãß°¡Àû¸³ ¾È³»
  • Ãß°¡ÇýÅà : µµ¼­¼Òµæ°øÁ¦ ¾È³» Ãß°¡ÇýÅà ´õº¸±â
  • ¹è¼Ûºñ : ¹«·á ¹è¼Ûºñ ¾È³»
  • [¹è¼ÛÀÏÁ¤] ±Ù¹«ÀÏ ±âÁØ 7ÀÏ À̳» Ãâ°í ¿¹Á¤ ¹è¼ÛÀÏÁ¤ ¾È³»
    ÇØ¿ÜÁÖ¹®µµ¼­´Â ÇØ¿Ü °Å·¡Ã³ »çÁ¤¿¡ ÀÇÇØ ǰÀý/Áö¿¬µÉ¼ö ÀÖ½À´Ï´Ù.
    ½ºÆä¼È¿À´õ µµ¼­³ª Àϼ­ÇØ¿ÜÁÖ¹®µµ¼­¿Í ÇÔ²² ÁÖ¹®½Ã ¹è¼ÛÀÏÀÌ ÀÌ¿¡ ¸ÂÃß¾î Áö¿¬µÇ¿À´Ï, ÀÌÁ¡ À¯ÀÇÇØÁֽñ⠹ٶø´Ï´Ù.

¾Ë¸³´Ï´Ù.

  • ÇØ¿ÜÁÖ¹®µµ¼­´Â °í°´´ÔÀÇ ¿äû¿¡ ÀÇÇØ ÁÖ¹®ÇÏ´Â '°³ÀÎ ¿À´õ' »óǰÀ̱⠶§¹®¿¡, ´Ü¼øÇÑ °í°´º¯½É/Âø¿À·Î ÀÎÇÑ Ãë¼Ò,¹Ýǰ, ±³È¯ÀÇ °æ¿ì 'ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á'¸¦ ºÎ´ãÇÏ¼Å¾ß ÇÕ´Ï´Ù. ÀÌÁ¡ À¯ÀÇÇÏ¿© Áֽñ⠹ٶø´Ï´Ù. ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á : (1)¼­¾çµµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 12%, (2)ÀϺ»µµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 7% (¹Ýǰ/Ãë¼Ò ¼ö¼ö·á´Â, ¼öÀÔÁ¦¹Ýºñ¿ë(FedEx¼ö¼Ûºñ¿ë, °ü¼¼»çºñ, º¸¼¼Ã¢°í·á, ³»·ú ¿î¼Ûºñ, Åë°üºñ µî)°ú Àç°í¸®½ºÅ©(¹ÌÆÇ¸Å ¸®½ºÅ©, ȯÂ÷¼Õ)¿¡ µû¸¥ ºñ¿ëÀ» Æ÷ÇÔÇϸç, ¼­¾çµµ¼­´Â ÆÇ¸ÅÁ¤°¡ÀÇ 12%, ÀϺ»µµ¼­´Â ÆÇ¸ÅÁ¤°¡ÀÇ 7%°¡ Àû¿ëµË´Ï´Ù.)
  • ¿Ü±¹µµ¼­ÀÇ °æ¿ì ÇØ¿ÜÁ¦°øÁ¤º¸·Î¸¸ ¼­ºñ½ºµÇ¾î ¹ÌÇ¥±âµÈ Á¤º¸°¡ ÀÖÀ» ¼ö ÀÖ½À´Ï´Ù. ÇÊ¿äÇÑ Á¤º¸°¡ ÀÖÀ»°æ¿ì 1:1 ¹®ÀÇ°Ô½ÃÆÇ À» ÀÌ¿ëÇÏ¿© ÁֽʽÿÀ.
»óǰ»ó¼¼Á¤º¸
ISBN 9780521869591(0521869595)
Âʼö 248ÂÊ
¾ð¾î English
Å©±â 155(W) X 229(H) X 18(T) (mm)
Á¦º»ÇüÅ Hardcover
ÃѱǼö 1±Ç
Textual Format Textbooks, Lower level
¸®µùÁö¼ö Level Scholarly/Graduate

Ã¥¼Ò°³

ÀÌ Ã¥ÀÌ ¼ÓÇÑ ºÐ¾ß

Most econometric books do not recognize the ill-posed inverse nature of their econometric models and the indirect noisy characteristics of their sample data. This book focuses on these problems and provides a basis for dealing with estimation and inference issues that typically arise in a range of traditional and nontraditional econometric models.
"This book is intended to provide the reader with a firm conceptual and empirical understanding of basic information-theoretic models and methods. Because most data are observational, practitioners work with indirect noisy observation and ill-posed econometric in the form of stochastic inverse problems. Consequently, traditional econometric methods in many cases are not applicable for answering many of the quantitative questions that analysts wish to ask. After initial chapters deal with parametric and semiparametric linear probability models, the focus turns to solving nonparametric stochastic inverse problems. In succeeding chapters, a family of pwer divergence measure-likelihood functions are introduced for a range of traditional and nontraditional econometric-models problems. Finally, within either an empirical maximum likelihood or loss context, Ron C. Mittelhammer and George G. Judge suggest a basis for choosing a member of the divergence family"--
Intended to provide the reader with a firm conceptual and empirical understanding of basic information-theoretic econometric models and methods.
ÀÌ Ã¥ÀÇ »óǰ±¸¼º
* ÇØ´ç »óǰÀÇ »ó¼¼±¸¼ºÁ¤º¸¸¦ ÁغñÁßÀÔ´Ï´Ù.

¸ñÂ÷

Preface; 1. Econometric information recovery; Part I. Traditional Parametric and Semiparametric Probability Models: Estimation and Inference: 2. Formulation and analysis of parametric and semiparametric linear models; 3. Method of moments, GMM, and estimating equations; Part II. Formulation and Solution of Stochastic Inverse Problems: 4. A stochastic-empirical likelihood inverse problem: formulation and estimation; 5. A stochastic-empirical likelihood inverse problem: inference; 6. Kullback-Leibler information and the maximum empirical exponential likelihood; Part III. A Family of Minimum Discrepancy Estimators: 7. The Cressie-Read family of divergence measures and likelihood functions; 8. Cressie-Read-MEL-type estimators in practice: evidence of estimation and inference sampling performance; Part IV. Binary Discrete Choice MPD-EML Econometric Models: 9. Family of distribution functions for the binary response-choice model; 10. Estimation and inference for the binary response model based on the MPD family of distributions; Part V. Optimal Convex Divergence: 11. Choosing the optimal divergence under quadratic loss; 12. Epilogue.

°£´Ü¸®ºä (0)

0/1000ÀÚ
ÄÁÅÙÃ÷Æò°¡
5Á¡ ¸¸Á¡¿¡
0Á¡ 1Á¡ 2Á¡ 3Á¡ 4Á¡ 5Á¡
À̹ÌÁö÷ºÎ
(ÆÄÀϿ뷮Àº 1MB ÀÌÇÏÀ̸ç, ÆÄÀÏÇü½ÄÀº jpg, jpeg ÆÄÀϸ¸ ¾÷·Îµå °¡´ÉÇÕ´Ï´Ù.)

    ±³È¯/¹Ýǰ/ǰÀý¾È³»

    ¡Ø »óǰ ¼³¸í¿¡ ¹Ýǰ/±³È¯ °ü·ÃÇÑ ¾È³»°¡ ÀÖ´Â °æ¿ì ±× ³»¿ëÀ» ¿ì¼±À¸·Î ÇÕ´Ï´Ù. (¾÷ü »çÁ¤¿¡ µû¶ó ´Þ¶óÁú ¼ö ÀÖ½À´Ï´Ù.)

    ±³È¯/¹Ýǰ/ǰÀý¾È³»
    ¹Ýǰ/±³È¯¹æ¹ý ¸¶ÀÌ·ë > ÁÖ¹®°ü¸® > ÁÖ¹®/¹è¼Û³»¿ª > ÁÖ¹®Á¶È¸ > ¹Ýǰ/±³È¯½Åû ,
    [1:1»ó´ã>¹Ýǰ/±³È¯/ȯºÒ] ¶Ç´Â °í°´¼¾ÅÍ (1544-1900)

    ¡Ø ¿ÀǸ¶ÄÏ, ÇØ¿Ü¹è¼ÛÁÖ¹®, ±âÇÁÆ® ÁÖ¹®½Ã [1:1»ó´ã>¹Ýǰ/±³È¯/ȯºÒ]
        ¶Ç´Â °í°´¼¾ÅÍ (1544-1900)
    ¹Ýǰ/±³È¯°¡´É ±â°£ º¯½É¹ÝǰÀÇ °æ¿ì ¼ö·É ÈÄ 7ÀÏ À̳»,
    »óǰÀÇ °áÇÔ ¹× °è¾à³»¿ë°ú ´Ù¸¦ °æ¿ì ¹®Á¦Á¡ ¹ß°ß ÈÄ 30ÀÏ À̳»
    ¹Ýǰ/±³È¯ºñ¿ë º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹Ýǰ/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã
    ¹Ýǰ/±³È¯ ºÒ°¡ »çÀ¯
    • ¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óǰ µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì
      (´ÜÁö È®ÀÎÀ» À§ÇÑ Æ÷Àå ÈѼÕÀº Á¦¿Ü)
    • ¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óǰ µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
      ¿¹) È­Àåǰ, ½Äǰ, °¡ÀüÁ¦Ç°(¾Ç¼¼¼­¸® Æ÷ÇÔ) µî
    • º¹Á¦°¡ °¡´ÉÇÑ »óǰ µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì
      ¿¹) À½¹Ý/DVD/ºñµð¿À, ¼ÒÇÁÆ®¿þ¾î, ¸¸È­Ã¥, ÀâÁö, ¿µ»ó È­º¸Áý
    • ¼ÒºñÀÚÀÇ ¿äû¿¡ µû¶ó °³º°ÀûÀ¸·Î ÁÖ¹® Á¦À۵Ǵ »óǰÀÇ °æ¿ì ((1)ÇØ¿ÜÁÖ¹®µµ¼­)
    • µðÁöÅÐ ÄÁÅÙÃ÷ÀÎ eBook, ¿Àµð¿ÀºÏ µîÀ» 1ȸ ÀÌ»ó ´Ù¿î·Îµå¸¦ ¹Þ¾ÒÀ» °æ¿ì
    • ½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆÇ¸Å°¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
    • ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡
      ÇØ´çµÇ´Â °æ¿ì
    (1) ÇØ¿ÜÁÖ¹®µµ¼­ : ÀÌ¿ëÀÚÀÇ ¿äû¿¡ ÀÇÇÑ °³ÀÎÁÖ¹®»óǰÀ¸·Î ´Ü¼øº¯½É ¹× Âø¿À·Î ÀÎÇÑ Ãë¼Ò/±³È¯/¹Ýǰ ½Ã ¡®ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á¡¯ °í°´ ºÎ´ã (ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á : ¨ç¼­¾çµµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 12%, ¨èÀϺ»µµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 7%¸¦ Àû¿ë)
    »óǰ ǰÀý °ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ ǰÀý/Áö¿¬µÉ ¼ö ÀÖÀ¸¸ç, ǰÀý ½Ã °ü·Ã »çÇ׿¡ ´ëÇØ¼­´Â
    À̸ÞÀϰú ¹®ÀÚ·Î ¾È³»µå¸®°Ú½À´Ï´Ù.
    ¼ÒºñÀÚ ÇÇÇØº¸»ó
    ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó
    • »óǰÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, ǰÁúº¸Áõ ¹× ÇÇÇØº¸»ó µî¿¡ °üÇÑ »çÇ×Àº
      ¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øÈ¸ °í½Ã)¿¡ ÁØÇÏ¿© 󸮵Ê
    • ´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ
      ¼ÒºñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ

    ÀÌ ºÐ¾ßÀÇ º£½ºÆ®

    ´õº¸±â+

    ÀÌ ºÐ¾ßÀÇ ½Å°£

    ´õº¸±â+
    ¹Ù·Î°¡±â
    • ¿ìÃø È®ÀåÇü ¹è³Ê 2
    • ¿ìÃø È®ÀåÇü ¹è³Ê 2
    ÃÖ±Ù º» »óǰ