º»¹®³»¿ë ¹Ù·Î°¡±â
¹«·á¹è¼Û ¼Òµæ°øÁ¦

ÇØ¿ÜÁÖ¹® [Book] Calculus Made Easy Being a Very-Simplest Introduction to Those Beautiful Methods of Reckoning Which Are Generally Called by the Terrifying Names of the Differential Calculus and the Integral Calculus

3/E 1998 | Hardcover
  • Á¤°¡ : 37,280¿ø
    ÆÇ¸Å°¡ : 29,450¿ø [21%¡é 7,830¿ø ÇÒÀÎ] ÇÒÀÎÄíÆù ¹Þ±â
  • ÅëÇÕÆ÷ÀÎÆ® :
    [±âº»Àû¸³] 300¿ø Àû¸³ [1% Àû¸³] [Ãß°¡Àû¸³] 5¸¸¿ø ÀÌ»ó ±¸¸Å ½Ã 2õ¿ø Ãß°¡Àû¸³ ¾È³» [ȸ¿øÇýÅÃ] ½Ç¹öµî±Þ ÀÌ»ó, 3¸¸¿ø ÀÌ»ó ±¸¸Å ½Ã 2~4% Ãß°¡Àû¸³ ¾È³»
  • Ãß°¡ÇýÅà : µµ¼­¼Òµæ°øÁ¦ ¾È³» Ãß°¡ÇýÅà ´õº¸±â
  • ¹è¼Ûºñ : ¹«·á ¹è¼Ûºñ ¾È³»
  • [¹è¼ÛÀÏÁ¤] ±Ù¹«ÀÏ ±âÁØ 7ÀÏ À̳» Ãâ°í ¿¹Á¤ ¹è¼ÛÀÏÁ¤ ¾È³»
    ÇØ¿ÜÁÖ¹®µµ¼­´Â ÇØ¿Ü °Å·¡Ã³ »çÁ¤¿¡ ÀÇÇØ ǰÀý/Áö¿¬µÉ¼ö ÀÖ½À´Ï´Ù.
    ½ºÆä¼È¿À´õ µµ¼­³ª Àϼ­ÇØ¿ÜÁÖ¹®µµ¼­¿Í ÇÔ²² ÁÖ¹®½Ã ¹è¼ÛÀÏÀÌ ÀÌ¿¡ ¸ÂÃß¾î Áö¿¬µÇ¿À´Ï, ÀÌÁ¡ À¯ÀÇÇØÁֽñ⠹ٶø´Ï´Ù.

¾Ë¸³´Ï´Ù.

  • ÇØ¿ÜÁÖ¹®µµ¼­´Â °í°´´ÔÀÇ ¿äû¿¡ ÀÇÇØ ÁÖ¹®ÇÏ´Â '°³ÀÎ ¿À´õ' »óǰÀ̱⠶§¹®¿¡, ´Ü¼øÇÑ °í°´º¯½É/Âø¿À·Î ÀÎÇÑ Ãë¼Ò,¹Ýǰ, ±³È¯ÀÇ °æ¿ì 'ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á'¸¦ ºÎ´ãÇÏ¼Å¾ß ÇÕ´Ï´Ù. ÀÌÁ¡ À¯ÀÇÇÏ¿© Áֽñ⠹ٶø´Ï´Ù. ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á : (1)¼­¾çµµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 12%, (2)ÀϺ»µµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 7% (¹Ýǰ/Ãë¼Ò ¼ö¼ö·á´Â, ¼öÀÔÁ¦¹Ýºñ¿ë(FedEx¼ö¼Ûºñ¿ë, °ü¼¼»çºñ, º¸¼¼Ã¢°í·á, ³»·ú ¿î¼Ûºñ, Åë°üºñ µî)°ú Àç°í¸®½ºÅ©(¹ÌÆÇ¸Å ¸®½ºÅ©, ȯÂ÷¼Õ)¿¡ µû¸¥ ºñ¿ëÀ» Æ÷ÇÔÇϸç, ¼­¾çµµ¼­´Â ÆÇ¸ÅÁ¤°¡ÀÇ 12%, ÀϺ»µµ¼­´Â ÆÇ¸ÅÁ¤°¡ÀÇ 7%°¡ Àû¿ëµË´Ï´Ù.)
  • ¿Ü±¹µµ¼­ÀÇ °æ¿ì ÇØ¿ÜÁ¦°øÁ¤º¸·Î¸¸ ¼­ºñ½ºµÇ¾î ¹ÌÇ¥±âµÈ Á¤º¸°¡ ÀÖÀ» ¼ö ÀÖ½À´Ï´Ù. ÇÊ¿äÇÑ Á¤º¸°¡ ÀÖÀ»°æ¿ì 1:1 ¹®ÀÇ°Ô½ÃÆÇ À» ÀÌ¿ëÇÏ¿© ÁֽʽÿÀ.

ÀÌ Ã¥ÀÇ ¿¬°ü»óǰ

»óǰ»ó¼¼Á¤º¸
ISBN 9780312185480(0312185480)
Âʼö 336ÂÊ
¾ð¾î English
Å©±â 146(W) X 212(H) X 29(T) (mm)
ÆÇ 3/E 1998
Á¦º»ÇüÅ Hardcover
»ðÈ­À¯¹« »ðÈ­ÀÖÀ½
ÃѱǼö 1±Ç
¸®µùÁö¼ö Level General Adult

Ã¥¼Ò°³

ÀÌ Ã¥ÀÌ ¼ÓÇÑ ºÐ¾ß

Updates the classic calculus primer
ÀÌ Ã¥ÀÇ »óǰ±¸¼º
* ÇØ´ç »óǰÀÇ »ó¼¼±¸¼ºÁ¤º¸¸¦ ÁغñÁßÀÔ´Ï´Ù.

¸ñÂ÷

Preface to the 1998 Edition 1 (9)
Preliminary Chapters 10 (26)
Martin Gardner
1. What Is a Function? 10 (8)
2. What Is a Limit? 18 (12)
3. What Is a Derivative? 30 (6)
Calculus Made Easy 36 (3)
Silvanus P. Thompson
Publisher's Note on the Third Edition 36 (2)
Prologue 38 (1)
I. To Deliver You from the Preliminary 39 (2)
Terrors
II. On Different Degrees of Smallness 41 (4)
III. On Relative Growings 45 (6)
IV. Simplest Cases 51 (8)
V. Next Stage. What to Do with Constants 59 (7)
VI. Sums, Differences, Products, and 66 (13)
Quotients
VII. Successive Differentiation 79 (4)
VIII. When Time Varies 83 (11)
IX. Introducing a Useful Dodge 94 (9)
X. Geometrical Meaning of Differentiation 103(13)
XI. Maxima and Minima 116(16)
XII. Curvature of Curves 132(7)
XIII. Partial Fractions and Inverse Functions 139(11)
XIV. On True Compound Interest and the Law 150(25)
of Organic Growth
XV. How to Deal with Sines and Cosines 175(9)
XVI. Partial Differentiation 184(7)
XVII. Integration 191(7)
XVIII. Integrating as the Reverse of 198(12)
Differentiating
XIX. On Finding Areas by Integrating 210(17)
XX. Dodges, Pitfalls, and Triumphs 227(8)
XXI. Finding Solutions 235(14)
XXII. A Little More about Curvature of Curves 249(14)
XXIII. How to Find the Length of an Arc on a 263(13)
Curve
Table of Standard Forms 276(3)
Epilogue and Apologue 279(2)
Answers to Exercises 281(15)
Appendix: Some Recreational Problems Relating 296(30)
to Calculus
Martin Gardner
Index 326(4)
About the Authors 330

°£´Ü¸®ºä (0)

µµ¼­ ±¸¸Å ÈÄ ¸®ºä¸¦ ÀÛ¼ºÇϽøé ÅëÇÕÆ÷ÀÎÆ®¸¦ µå¸³´Ï´Ù.
°áÁ¦ 90ÀÏ À̳» ÀÛ¼º ½Ã 50¿ø / ¹ß¼Û ÈÄ 5ÀÏ À̳» ÀÛ¼º ½Ã 100¿ø
(Æ÷ÀÎÆ®´Â ÀÛ¼º ÈÄ ´ÙÀ½ ³¯ Àû¸³µÇ¸ç, µµ¼­ ¹ß¼Û Àü ÀÛ¼º ½Ã¿¡´Â ¹ß¼Û ÈÄ ÀÍÀÏ¿¡ Àû¸³µË´Ï´Ù.
¿Ü¼­/eBook/À½¹Ý/DVD/GIFT ¹× ÀâÁö »óǰ Á¦¿Ü) ¾È³»
0/1000ÀÚ
ÄÁÅÙÃ÷Æò°¡
5Á¡ ¸¸Á¡¿¡
0Á¡ 1Á¡ 2Á¡ 3Á¡ 4Á¡ 5Á¡
À̹ÌÁö÷ºÎ
(ÆÄÀϿ뷮Àº 1MB ÀÌÇÏÀ̸ç, ÆÄÀÏÇü½ÄÀº jpg, jpeg ÆÄÀϸ¸ ¾÷·Îµå °¡´ÉÇÕ´Ï´Ù.)

    ±³È¯/¹Ýǰ/ǰÀý¾È³»

    ¡Ø »óǰ ¼³¸í¿¡ ¹Ýǰ/±³È¯ °ü·ÃÇÑ ¾È³»°¡ ÀÖ´Â °æ¿ì ±× ³»¿ëÀ» ¿ì¼±À¸·Î ÇÕ´Ï´Ù. (¾÷ü »çÁ¤¿¡ µû¶ó ´Þ¶óÁú ¼ö ÀÖ½À´Ï´Ù.)

    ±³È¯/¹Ýǰ/ǰÀý¾È³»
    ¹Ýǰ/±³È¯¹æ¹ý ¸¶ÀÌ·ë > ÁÖ¹®°ü¸® > ÁÖ¹®/¹è¼Û³»¿ª > ÁÖ¹®Á¶È¸ > ¹Ýǰ/±³È¯½Åû ,
    [1:1»ó´ã>¹Ýǰ/±³È¯/ȯºÒ] ¶Ç´Â °í°´¼¾ÅÍ (1544-1900)

    ¡Ø ¿ÀǸ¶ÄÏ, ÇØ¿Ü¹è¼ÛÁÖ¹®, ±âÇÁÆ® ÁÖ¹®½Ã [1:1»ó´ã>¹Ýǰ/±³È¯/ȯºÒ]
        ¶Ç´Â °í°´¼¾ÅÍ (1544-1900)
    ¹Ýǰ/±³È¯°¡´É ±â°£ º¯½É¹ÝǰÀÇ °æ¿ì ¼ö·É ÈÄ 7ÀÏ À̳»,
    »óǰÀÇ °áÇÔ ¹× °è¾à³»¿ë°ú ´Ù¸¦ °æ¿ì ¹®Á¦Á¡ ¹ß°ß ÈÄ 30ÀÏ À̳»
    ¹Ýǰ/±³È¯ºñ¿ë º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹Ýǰ/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã
    ¹Ýǰ/±³È¯ ºÒ°¡ »çÀ¯
    • ¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óǰ µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì
      (´ÜÁö È®ÀÎÀ» À§ÇÑ Æ÷Àå ÈѼÕÀº Á¦¿Ü)
    • ¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óǰ µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
      ¿¹) È­Àåǰ, ½Äǰ, °¡ÀüÁ¦Ç°(¾Ç¼¼¼­¸® Æ÷ÇÔ) µî
    • º¹Á¦°¡ °¡´ÉÇÑ »óǰ µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì
      ¿¹) À½¹Ý/DVD/ºñµð¿À, ¼ÒÇÁÆ®¿þ¾î, ¸¸È­Ã¥, ÀâÁö, ¿µ»ó È­º¸Áý
    • ¼ÒºñÀÚÀÇ ¿äû¿¡ µû¶ó °³º°ÀûÀ¸·Î ÁÖ¹® Á¦À۵Ǵ »óǰÀÇ °æ¿ì ((1)ÇØ¿ÜÁÖ¹®µµ¼­)
    • µðÁöÅÐ ÄÁÅÙÃ÷ÀÎ eBook, ¿Àµð¿ÀºÏ µîÀ» 1ȸ ÀÌ»ó ´Ù¿î·Îµå¸¦ ¹Þ¾ÒÀ» °æ¿ì
    • ½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆÇ¸Å°¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
    • ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡
      ÇØ´çµÇ´Â °æ¿ì
    (1) ÇØ¿ÜÁÖ¹®µµ¼­ : ÀÌ¿ëÀÚÀÇ ¿äû¿¡ ÀÇÇÑ °³ÀÎÁÖ¹®»óǰÀ¸·Î ´Ü¼øº¯½É ¹× Âø¿À·Î ÀÎÇÑ Ãë¼Ò/±³È¯/¹Ýǰ ½Ã ¡®ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á¡¯ °í°´ ºÎ´ã (ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á : ¨ç¼­¾çµµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 12%, ¨èÀϺ»µµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 7%¸¦ Àû¿ë)
    »óǰ ǰÀý °ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ ǰÀý/Áö¿¬µÉ ¼ö ÀÖÀ¸¸ç, ǰÀý ½Ã °ü·Ã »çÇ׿¡ ´ëÇØ¼­´Â
    À̸ÞÀϰú ¹®ÀÚ·Î ¾È³»µå¸®°Ú½À´Ï´Ù.
    ¼ÒºñÀÚ ÇÇÇØº¸»ó
    ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó
    • »óǰÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, ǰÁúº¸Áõ ¹× ÇÇÇØº¸»ó µî¿¡ °üÇÑ »çÇ×Àº
      ¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øÈ¸ °í½Ã)¿¡ ÁØÇÏ¿© 󸮵Ê
    • ´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ
      ¼ÒºñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ

    ¹Ù·Î°¡±â

    • ¿ìÃø È®ÀåÇü ¹è³Ê 2
    • ¿ìÃø È®ÀåÇü ¹è³Ê 2

    ÃÖ±Ù º» »óǰ