»óǰ»ó¼¼Á¤º¸
ISBN |
9780312185480(0312185480) |
Âʼö |
336ÂÊ |
¾ð¾î |
English |
Å©±â |
146(W) X 212(H) X 29(T) (mm) |
ÆÇ |
3/E 1998 |
Á¦º»ÇüÅ |
Hardcover |
»ðÈÀ¯¹« |
»ðÈÀÖÀ½ |
ÃѱǼö |
1±Ç |
¸®µùÁö¼ö Level |
General Adult |
Ã¥¼Ò°³
ÀÌ Ã¥ÀÌ ¼ÓÇÑ ºÐ¾ß
Updates the classic calculus primer
ÀÌ Ã¥ÀÇ »óǰ±¸¼º
* ÇØ´ç »óǰÀÇ »ó¼¼±¸¼ºÁ¤º¸¸¦ ÁغñÁßÀÔ´Ï´Ù.
|
¸ñÂ÷
Preface to the 1998 Edition 1 (9)
Preliminary Chapters 10 (26)
Martin Gardner
1. What Is a Function? 10 (8)
2. What Is a Limit? 18 (12)
3. What Is a Derivative? 30 (6)
Calculus Made Easy 36 (3)
Silvanus P. Thompson
Publisher's Note on the Third Edition 36 (2)
Prologue 38 (1)
I. To Deliver You from the Preliminary 39 (2)
Terrors
II. On Different Degrees of Smallness 41 (4)
III. On Relative Growings 45 (6)
IV. Simplest Cases 51 (8)
V. Next Stage. What to Do with Constants 59 (7)
VI. Sums, Differences, Products, and 66 (13)
Quotients
VII. Successive Differentiation 79 (4)
VIII. When Time Varies 83 (11)
IX. Introducing a Useful Dodge 94 (9)
X. Geometrical Meaning of Differentiation 103(13)
XI. Maxima and Minima 116(16)
XII. Curvature of Curves 132(7)
XIII. Partial Fractions and Inverse Functions 139(11)
XIV. On True Compound Interest and the Law 150(25)
of Organic Growth
XV. How to Deal with Sines and Cosines 175(9)
XVI. Partial Differentiation 184(7)
XVII. Integration 191(7)
XVIII. Integrating as the Reverse of 198(12)
Differentiating
XIX. On Finding Areas by Integrating 210(17)
XX. Dodges, Pitfalls, and Triumphs 227(8)
XXI. Finding Solutions 235(14)
XXII. A Little More about Curvature of Curves 249(14)
XXIII. How to Find the Length of an Arc on a 263(13)
Curve
Table of Standard Forms 276(3)
Epilogue and Apologue 279(2)
Answers to Exercises 281(15)
Appendix: Some Recreational Problems Relating 296(30)
to Calculus
Martin Gardner
Index 326(4)
About the Authors 330
±³È¯/¹Ýǰ/ǰÀý¾È³»
¡Ø »óǰ ¼³¸í¿¡ ¹Ýǰ/±³È¯ °ü·ÃÇÑ ¾È³»°¡ ÀÖ´Â °æ¿ì ±× ³»¿ëÀ» ¿ì¼±À¸·Î ÇÕ´Ï´Ù. (¾÷ü »çÁ¤¿¡ µû¶ó ´Þ¶óÁú ¼ö ÀÖ½À´Ï´Ù.)
±³È¯/¹Ýǰ/ǰÀý¾È³»
¹Ýǰ/±³È¯¹æ¹ý |
¸¶ÀÌ·ë > ÁÖ¹®°ü¸® > ÁÖ¹®/¹è¼Û³»¿ª > ÁÖ¹®Á¶È¸ > ¹Ýǰ/±³È¯½Åû ,
[1:1»ó´ã>¹Ýǰ/±³È¯/ȯºÒ] ¶Ç´Â °í°´¼¾ÅÍ (1544-1900)
¡Ø ¿ÀǸ¶ÄÏ, ÇØ¿Ü¹è¼ÛÁÖ¹®, ±âÇÁÆ® ÁÖ¹®½Ã [1:1»ó´ã>¹Ýǰ/±³È¯/ȯºÒ]
¶Ç´Â °í°´¼¾ÅÍ (1544-1900) |
¹Ýǰ/±³È¯°¡´É ±â°£ |
º¯½É¹ÝǰÀÇ °æ¿ì ¼ö·É ÈÄ 7ÀÏ À̳», »óǰÀÇ °áÇÔ ¹× °è¾à³»¿ë°ú ´Ù¸¦ °æ¿ì ¹®Á¦Á¡ ¹ß°ß ÈÄ 30ÀÏ À̳» |
¹Ýǰ/±³È¯ºñ¿ë |
º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹Ýǰ/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã |
¹Ýǰ/±³È¯ ºÒ°¡ »çÀ¯ |
- ¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óǰ µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì
(´ÜÁö È®ÀÎÀ» À§ÇÑ Æ÷Àå ÈѼÕÀº Á¦¿Ü)
- ¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óǰ µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
¿¹) ÈÀåǰ, ½Äǰ, °¡ÀüÁ¦Ç°(¾Ç¼¼¼¸® Æ÷ÇÔ) µî
- º¹Á¦°¡ °¡´ÉÇÑ »óǰ µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì
¿¹) À½¹Ý/DVD/ºñµð¿À, ¼ÒÇÁÆ®¿þ¾î, ¸¸ÈÃ¥, ÀâÁö, ¿µ»ó Ⱥ¸Áý
- ¼ÒºñÀÚÀÇ ¿äû¿¡ µû¶ó °³º°ÀûÀ¸·Î ÁÖ¹® Á¦À۵Ǵ »óǰÀÇ °æ¿ì ((1)ÇØ¿ÜÁÖ¹®µµ¼)
- µðÁöÅÐ ÄÁÅÙÃ÷ÀÎ eBook, ¿Àµð¿ÀºÏ µîÀ» 1ȸ ÀÌ»ó ´Ù¿î·Îµå¸¦ ¹Þ¾ÒÀ» °æ¿ì
- ½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆÇ¸Å°¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
- ÀüÀÚ»ó°Å·¡ µî¿¡¼ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡
ÇØ´çµÇ´Â °æ¿ì
(1) ÇØ¿ÜÁÖ¹®µµ¼ : ÀÌ¿ëÀÚÀÇ ¿äû¿¡ ÀÇÇÑ °³ÀÎÁÖ¹®»óǰÀ¸·Î ´Ü¼øº¯½É ¹× Âø¿À·Î ÀÎÇÑ Ãë¼Ò/±³È¯/¹Ýǰ ½Ã ¡®ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á¡¯ °í°´ ºÎ´ã (ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á : ¨ç¼¾çµµ¼-ÆÇ¸ÅÁ¤°¡ÀÇ 12%, ¨èÀϺ»µµ¼-ÆÇ¸ÅÁ¤°¡ÀÇ 7%¸¦ Àû¿ë)
|
»óǰ ǰÀý |
°ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ ǰÀý/Áö¿¬µÉ ¼ö ÀÖÀ¸¸ç, ǰÀý ½Ã °ü·Ã »çÇ׿¡ ´ëÇØ¼´Â À̸ÞÀϰú ¹®ÀÚ·Î ¾È³»µå¸®°Ú½À´Ï´Ù. |
¼ÒºñÀÚ ÇÇÇØº¸»ó
ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó |
- »óǰÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, ǰÁúº¸Áõ ¹× ÇÇÇØº¸»ó µî¿¡ °üÇÑ »çÇ×Àº
¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øÈ¸ °í½Ã)¿¡ ÁØÇÏ¿© 󸮵Ê
- ´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼ÀÇ
¼ÒºñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ
|