º»¹®³»¿ë ¹Ù·Î°¡±â
¹«·á¹è¼Û À̺¥Æ® ¼Òµæ°øÁ¦

[Book] Deep Learning Adaptive Computation and Machine Learning

Hardcover
Goodfellow, Ian , Bengio, Yoshua/ Courville, Aaron ÁöÀ½ | MIT Press (MA) | 2016³â 12¿ù 09ÀÏ

ÀÌ Ã¥ÀÇ ´Ù¸¥ »óǰ Á¤º¸

  • Á¤°¡ : 69,000¿ø
    ÆÇ¸Å°¡ : 66,930¿ø [3%¡é 2,070¿ø ÇÒÀÎ] ÇÒÀÎÄíÆù ¹Þ±â
  • ÅëÇÕÆ÷ÀÎÆ® :
    [±âº»Àû¸³] 670¿ø Àû¸³ [1% Àû¸³] [Ãß°¡Àû¸³] 5¸¸¿ø ÀÌ»ó ±¸¸Å ½Ã 2õ¿ø Ãß°¡Àû¸³ ¾È³» [ȸ¿øÇýÅÃ] ½Ç¹öµî±Þ ÀÌ»ó, 3¸¸¿ø ÀÌ»ó ±¸¸Å ½Ã 2~4% Ãß°¡Àû¸³ ¾È³»
  • Ãß°¡ÇýÅà : Æ÷ÀÎÆ® ¾È³» µµ¼­¼Òµæ°øÁ¦ ¾È³» Ãß°¡ÇýÅà ´õº¸±â
  • ¹è¼Ûºñ : ¹«·á ¹è¼Ûºñ ¾È³»
  • ¹è¼ÛÀÏÁ¤ : ¼­¿ïƯº°½Ã Á¾·Î±¸ ¼¼Á¾´ë·Î ±âÁØ Áö¿ªº¯°æ
    Áö±Ý ÁÖ¹®ÇÏ¸é ³»ÀÏ(20ÀÏ,¼ö) µµÂø ¿¹Á¤ ¹è¼ÛÀÏÁ¤ ¾È³»

¾Ë¸³´Ï´Ù.

  • ¿Ü±¹µµ¼­ÀÇ °æ¿ì ÇØ¿ÜÁ¦°øÁ¤º¸·Î¸¸ ¼­ºñ½ºµÇ¾î ¹ÌÇ¥±âµÈ Á¤º¸°¡ ÀÖÀ» ¼ö ÀÖ½À´Ï´Ù. ÇÊ¿äÇÑ Á¤º¸°¡ ÀÖÀ»°æ¿ì 1:1 ¹®ÀÇ°Ô½ÃÆÇ À» ÀÌ¿ëÇÏ¿© ÁֽʽÿÀ.

ÀÌ Ã¥ÀÇ À̺¥Æ® ÇØ¿ÜÁÖ¹®/¹Ù·Îµå¸²/Á¦ÈÞ»çÁÖ¹®/¾÷ü¹è¼Û°ÇÀÇ °æ¿ì 1+1 ÁõÁ¤»óǰÀÌ ¹ß¼ÛµÇÁö ¾Ê½À´Ï´Ù.

  • MANNING, O'REILLY, PACKT, WILE..
    2016.03.07 ~ 2021.12.31
»óǰ»ó¼¼Á¤º¸
ISBN 9780262035613(0262035618)
Âʼö 800ÂÊ
¾ð¾î English
Å©±â 183(W) X 237(H) X 32(T) (mm)
Á¦º»ÇüÅ Hardcover
ÃѱǼö 1±Ç
Textual Format Computer Applications
¸®µùÁö¼ö Level Scholarly/Graduate

Ã¥¼Ò°³

ÀÌ Ã¥ÀÌ ¼ÓÇÑ ºÐ¾ß

ÀÌ Ã¥ÀÇ ÁÖÁ¦¾î

Overview
Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.

The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.

Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

¿ø¼­¹ø¿ª¼­ ³»¿ë ¿³º¸±â

½ÉÃþ ÇнÀÀÇ ´Ù¾çÇÑ ÁÖÁ¦¸¦ ¼Ò°³ÇÏ´Â ¡º½ÉÃþ ÇнÀ¡». ½ÉÃþ ÇнÀ¿¡¼­´Â ÄÄÇ»ÅͰ¡ °æÇè¿¡¼­ Áö½ÄÀ» ¼öÁýÇϹǷÎ, ÄÄÇ»ÅÍ¿¡ ÇÊ¿äÇÑ ¸ðµç Áö½ÄÀ» »ç¶÷(ÄÄÇ»ÅÍ ¿î¿µÀÚ)ÀÌ ÀÏÀÏÀÌ ÁöÁ¤ÇÒ Çʿ䰡 ¾ø´Ù. ±×¸®°í °³³äµéÀÇ °èÅ뱸Á¶ ´öºÐ¿¡ ÄÄÇ»ÅÍ´Â °£´ÜÇÑ °³³äµéÀ» Á¶ÇÕÇØ¼­ Á» ´õ º¹ÀâÇÑ °³³äÀ» ¹è¿ì°Ô µÈ´Ù. ±×·¯ÇÑ °èÅ뱸Á¶ÀÇ ±×·¡ÇÁ´Â ´Ù¼öÀÇ ÃþÀ¸·Î ÀÌ·ç¾îÁø ¡®½ÉÃþ¡¯ ±¸Á¶¸¦ °¡Áú ¼ö ÀÖ´Ù.

ÀÌ Ã¥Àº ¿ì¼± ½ÉÃþ ÇнÀ°ú °ü·ÃµÈ ¼±Çü´ë¼ö, È®·ü·Ð, Á¤º¸ ÀÌ·Ð, ¼öÄ¡ °è»ê, ±â°è ÇнÀÀÇ ¿©·¯ ÁÖ¿ä °³³äÀ» ¼Ò°³ÇÑ´Ù. ±×·± ´ÙÀ½¿¡´Â ½ÉÃþ ¼ø¹æÇ⠽Űæ¸Á, Á¤Ä¢È­, ÃÖÀûÈ­ ¾Ë°í¸®Áò, ÇÕ¼º°ö ½Å°æ¸Á, ¼øÂ÷¿­ ¸ðÇüÈ­ µîµî ¾÷°è ½Ç¹«ÀÚµéÀÌ »ç¿ëÇÏ´Â ¿©·¯ ½ÉÃþ ÇнÀ ±â¹ýµéÀ» ¼³¸íÇϰí, Çö½ÇÀûÀÎ ½ÉÃþ ÇнÀ ½Çõ ¹æ¹ý·Ðµµ ¼Ò°³ÇÑ´Ù.

¶ÇÇÑ ÀÚ¿¬¾î ó¸®, À½¼º ÀνÄ, ÄÄÇ»ÅÍ ½Ã°¢, ¿Â¶óÀÎ Ãßõ ½Ã½ºÅÛ, »ý¹°Á¤º¸ÇÐ, ºñµð¿À °ÔÀÓÀ» À§ÇØ ½ÉÃþ ÇнÀÀ» ÀÀ¿ëÇÏ´Â ¹æ¹ýµéµµ °³°ýÇÑ´Ù. ¸¶Áö¸·À¸·Î´Â ¿¬±¸ÀÇ °üÁ¡¿¡¼­ ½ÉÃþ ÇнÀÀ» »ìÆìº¸´Âµ¥, À̸¦Å×¸é ¼±Çü ÀÎÀÚ ¸ðÇü, ÀÚµ¿ºÎÈ£±â, Ç¥Çö ÇнÀ, ±¸Á¶Àû È®·ü ¸ðÇü, ¸óÅ×Ä«¸¦·Î ¹æ¹ý °°Àº ÀÌ·Ð ¿¬±¸ ÁÖÁ¦µéÀ» ¼Ò°³ÇÑ´Ù.

ÀÌ Ã¥ÀÇ ¿ø¼­¹ø¿ª¼­

¸ñÂ÷

1 Introduction
¥°Applied Math and Machine Learning Basics
2 Linear Algebra
3 Probability and Information Theory
4 Numerical Computation
5 Machine Learning Basics

¥±Deep Networks: Modern Practices
6 Deep Feedfoward Networks
7 Regularization for Deep Leaning
8 Optimization for Raining Deep Models
9 Convolutional Networks
10 Sequence Modeling: Recurrent and Recursive Nets
11 Practical Methodology
12 Applications

¥² Deep Leaning Research
13 Linear Factor Models
14 Autoencoders
15 Representation Learning
16 Structured Probabilistic Models for Deep Leaning
17 Monte Carlo Methods
18 Confonting the Partition Function
19 Approximate Inference
20 Deep Generative Models

ÃâÆÇ»ç ¼­Æò

¡°Written by three experts in the field, Deep Learning is the only comprehensive book on the subject. It provides much-needed broad perspective and mathematical preliminaries for software engineers and students entering the field, and serves as a reference for authorities.¡±
-Elon Musk, cochair of Op... ´õº¸±â

Klover ¸®ºä (0)

ºÏ·Î±× ¸®ºä (0) ¾²·¯°¡±â

µµ¼­ ±¸¸Å ÈÄ ¸®ºä¸¦ ÀÛ¼ºÇϽøé
°áÁ¦ 90ÀÏ À̳» 300¿ø, ¹ß¼Û ÈÄ 5ÀÏ À̳» 400¿ø, ÀÌ »óǰÀÇ Ã¹ ¸®ºä 500¿øÀÇ Æ÷ÀÎÆ®¸¦ µå¸³´Ï´Ù.

Æ÷ÀÎÆ®´Â ÀÛ¼º ÈÄ ´ÙÀ½ ³¯ Àû¸³µÇ¸ç, µµ¼­ ¹ß¼Û Àü ÀÛ¼º ½Ã¿¡´Â ¹ß¼Û ÈÄ ÀÍÀÏ¿¡ Àû¸³µË´Ï´Ù.
ºÏ·Î±× ¸®ºä´Â º»ÀÎÀÎÁõÀ» °ÅÄ£ ȸ¿ø¸¸ ÀÛ¼º °¡´ÉÇÕ´Ï´Ù.
(¡Ø ¿Ü¼­/eBook/À½¹Ý/DVD/GIFT ¹× ÀâÁö »óǰ Á¦¿Ü) ¾È³»
  • ÇØ´çµµ¼­ÀÇ ¸®ºä°¡ ¾ø½À´Ï´Ù.

¹®Àå¼öÁý (0) ¹®Àå¼öÁý ¾²±â ³ªÀÇ µ¶¼­±â·Ï º¸±â
※±¸¸Åµµ¼­ÀÇ ¹®Àå¼öÁýÀ» ±â·ÏÇϸé ÅëÇÕÆ÷ÀÎÆ® Àû¸³ ¾È³»

±³È¯/¹Ýǰ/ǰÀý¾È³»

¡Ø »óǰ ¼³¸í¿¡ ¹Ýǰ/±³È¯ °ü·ÃÇÑ ¾È³»°¡ ÀÖ´Â °æ¿ì ±× ³»¿ëÀ» ¿ì¼±À¸·Î ÇÕ´Ï´Ù. (¾÷ü »çÁ¤¿¡ µû¶ó ´Þ¶óÁú ¼ö ÀÖ½À´Ï´Ù.)

±³È¯/¹Ýǰ/ǰÀý¾È³»
¹Ýǰ/±³È¯¹æ¹ý ¸¶ÀÌ·ë > ÁÖ¹®°ü¸® > ÁÖ¹®/¹è¼Û³»¿ª > ÁÖ¹®Á¶È¸ > ¹Ýǰ/±³È¯½Åû ,
[1:1»ó´ã>¹Ýǰ/±³È¯/ȯºÒ] ¶Ç´Â °í°´¼¾ÅÍ (1544-1900)

¡Ø ¿ÀǸ¶ÄÏ, ÇØ¿Ü¹è¼ÛÁÖ¹®, ±âÇÁÆ® ÁÖ¹®½Ã [1:1»ó´ã>¹Ýǰ/±³È¯/ȯºÒ]
    ¶Ç´Â °í°´¼¾ÅÍ (1544-1900)
¹Ýǰ/±³È¯°¡´É ±â°£ º¯½É¹ÝǰÀÇ °æ¿ì ¼ö·É ÈÄ 7ÀÏ À̳»,
»óǰÀÇ °áÇÔ ¹× °è¾à³»¿ë°ú ´Ù¸¦ °æ¿ì ¹®Á¦Á¡ ¹ß°ß ÈÄ 30ÀÏ À̳»
¹Ýǰ/±³È¯ºñ¿ë º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹Ýǰ/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã
¹Ýǰ/±³È¯ ºÒ°¡ »çÀ¯
  • ¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óǰ µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì
    (´ÜÁö È®ÀÎÀ» À§ÇÑ Æ÷Àå ÈѼÕÀº Á¦¿Ü)
  • ¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óǰ µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
    ¿¹) È­Àåǰ, ½Äǰ, °¡ÀüÁ¦Ç°(¾Ç¼¼¼­¸® Æ÷ÇÔ) µî
  • º¹Á¦°¡ °¡´ÉÇÑ »óǰ µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì
    ¿¹) À½¹Ý/DVD/ºñµð¿À, ¼ÒÇÁÆ®¿þ¾î, ¸¸È­Ã¥, ÀâÁö, ¿µ»ó È­º¸Áý
  • ¼ÒºñÀÚÀÇ ¿äû¿¡ µû¶ó °³º°ÀûÀ¸·Î ÁÖ¹® Á¦À۵Ǵ »óǰÀÇ °æ¿ì ((1)ÇØ¿ÜÁÖ¹®µµ¼­)
  • µðÁöÅÐ ÄÁÅÙÃ÷ÀÎ eBook, ¿Àµð¿ÀºÏ µîÀ» 1ȸ ÀÌ»ó ´Ù¿î·Îµå¸¦ ¹Þ¾ÒÀ» °æ¿ì
  • ½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆÇ¸Å°¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
  • ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡
    ÇØ´çµÇ´Â °æ¿ì
(1) ÇØ¿ÜÁÖ¹®µµ¼­ : ÀÌ¿ëÀÚÀÇ ¿äû¿¡ ÀÇÇÑ °³ÀÎÁÖ¹®»óǰÀ¸·Î ´Ü¼øº¯½É ¹× Âø¿À·Î ÀÎÇÑ Ãë¼Ò/±³È¯/¹Ýǰ ½Ã ¡®ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á¡¯ °í°´ ºÎ´ã (ÇØ¿ÜÁÖ¹® ¹Ýǰ/Ãë¼Ò ¼ö¼ö·á : ¨ç¼­¾çµµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 12%, ¨èÀϺ»µµ¼­-ÆÇ¸ÅÁ¤°¡ÀÇ 7%¸¦ Àû¿ë)
»óǰ ǰÀý °ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ ǰÀý/Áö¿¬µÉ ¼ö ÀÖÀ¸¸ç, ǰÀý ½Ã °ü·Ã »çÇ׿¡ ´ëÇØ¼­´Â
À̸ÞÀϰú ¹®ÀÚ·Î ¾È³»µå¸®°Ú½À´Ï´Ù.
¼ÒºñÀÚ ÇÇÇØº¸»ó
ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó
  • »óǰÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, ǰÁúº¸Áõ ¹× ÇÇÇØº¸»ó µî¿¡ °üÇÑ »çÇ×Àº
    ¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øÈ¸ °í½Ã)¿¡ ÁØÇÏ¿© 󸮵Ê
  • ´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ
    ¼ÒºñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ

ÀÌ Ã¥ÀÇ ÇØ¿ÜÁÖ¹®°¡´Éµµ¼­°¡
ÀÖ½À´Ï´Ù.

ÀÌ Ã¥ÀÇ ¿ø¼­/¹ø¿ª¼­

¾È³»

ÀÌ ºÐ¾ßÀÇ º£½ºÆ®

´õº¸±â+

ÀÌ ºÐ¾ßÀÇ ½Å°£

´õº¸±â+

¹Ù·Î°¡±â

  • ¿ìÃø È®ÀåÇü ¹è³Ê 2
  • ¿ìÃø È®ÀåÇü ¹è³Ê 2

ÃÖ±Ù º» »óǰ